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Abstract 
 

Generalized association rule mining is an extension of 
traditional association rule mining to discover more 
informative rules, given a taxonomy. In this paper, we 
describe a formal framework for the problem of mining 
generalized association rules. In the framework, The 
subset-superset and the parent-child relationships among 
generalized itemsets are introduced to present the 
different views of generalized itemsets, i.e. the lattice of 
generalized itemsets and the taxonomies of k-generalized 
itemsets ,respectively. We present an optimization 
technique to reduce the time consuming by applying two 
constraints each of which corresponds to each view of 
generalized itemsets. In the mining process, a new set 
enumeration algorithm, named SET, that utilizes these 
constraints to fasten mining all generalized frequent 
itemsets is proposed. By experiments on synthetic data, 
the results show that SET outperforms the current most 
efficient algorithm, Prutax, by an order of magnitude or 
more. 
 
 
1. Introduction 
 

In the area of Knowledge Discovery in Databases 
(KDD), association rule mining is one of the important 
tasks. It was first introduced in [1] to find the set of all 
subsets of items (called itemsets) that frequently occur in 
many database records or transactions, and to extract the 
rules telling us how a subset of items influences the 
presence of another subset [2]. Nevertheless, association 
rules may not provide desired knowledge in the database. 
It may be limited with the granularity factors over the 
items.  For example, suppose that the database keeps a set 
of transactions, where chocolate milk tends to be 

purchased together with wheat bread. We may obtain a 
rule of “5% of customers who buy wheat breads, also buy 
chocolate milk”. At this point, it is more intuitive or more 
informative to have a rule like “30% of customers who 
buy bread, also buy milk” instead of the previous one. 

For this purpose, generalized association rule mining 
(GARM) was developed [3]. In GARM, a taxonomy (is-a 
hierarchy) over the items is available. In the supermarket 
scenario, the taxonomy can classify products (or items) 
into brands, categories, product groups, and so forth. 
Only leaf-level items of a taxonomy are presented in the 
database. Together with a taxonomy, the database can be 
used to mine more informative, initiative and flexible 
rules (called generalized association rules) than the 
traditional association rules.  

The problem of mining generalized association rules 
was first introduced in [3]. In this work, five algorithms 
named Basic, Cumulate, Stratify, Estimate and EstMerge 
were proposed to solve this problem. All of these 
algorithms use the horizontal database format and the 
breath-first search manner as in Apriori-based algorithm 
[2]. Basic first extends each transaction in a database by 
adding all distinct generalized items of each items 
existing in the original transaction, and then generates 
itemsets without pruning meaningless itemsets (itemsets 
containing both an item and its ancestor according to 
taxonomy). Cumulate, an improved variant of Basic, 
incrementally filters out the meaningless itemsets before 
counting their supports. Stratify exploits more taxonomy 
information. This method can reduce the number of 
generalized itemsets to be counted. Nevertheless, Stratify 
wastes a lot of time in scanning the database multiple 
times. Later, Estimate was proposed to get rid of this 
waste by using a sampling method to estimate the support 
of generalized itemsets. However, the extra pass to count 
the generalized itemsets, that may wrongly be expected 



 

 

not to satisfy the minimum support, has executed. 
EstMerge is an improvement of Estimate by postponing 
this extra pass in the step of calculating k-generalized 
frequent itemsets to the next step of calculating (k+1)-
generalized frequent itemsets. This action results in 
reducing the number of scanning database. 

More recently efficient algorithm named Prutax was 
proposed in [4]. Instead of horizontal database format, the 
vertical database format is applied to reduce the time 
needed for scanning database multiple times. Prutax 
aplies the right-most depth-first search manner. Instead of 
“generate and test” approach as done in the previous 
algorithms, Prutax avoids generating meaningless 
itemsets by using hash tree checking. In this approach, the 
generalized itemsets containing the items in the higher-
level of taxonomy are always evaluated before its 
descendants, which reduces the number of generalized 
itemsets to be calculated. However, the limitation of 
Prutax is the cost of checking. Each generalized itemset, 
which is generated, have to be checked whether its 
ancestor itemsets are frequent or not by using hash tree 
before counting its support.  

The main limitation of almost all proposed algorithms 
[3,4] is that they make multiple passes over the disk-
resident database incurring high I/O overheads. 
Moreover, these algorithms omit some useful information 
of taxonomy for optimization, and the cost of checking in 
Prutax algorithm adds more time consuming instead of 
reducing it. Our work aims to overcome these limitations. 

The rest of this paper is organized as follows. The 
problem of GARM is formally described in Section 2. In 
Section 3, two different views: the lattice of generalized 
itemsets and the taxonomies of k-generalized itemsets are 
presented. Two optimization constraints and our set 
enumeration, SET algorithm, are proposed in Section 5. 
In Section 6, the performance of SET is evaluated on 
synthetic datasets with some variations. The paper ends 
with a conclusion in Section 7. 

 
2. Problem Statement 
 

The generalized association rule can be formally 
stated as follows: Let I = {i1, i2, …, im} be a set of distinct 
items, let T = {1, 2, …, n} be a set of transaction 
identifiers (tids), and let D = {tj | j∈ T} be an input 
database where tj is the j-th transaction. A transaction can 
be represented with a set of items (a subset of I), so-called 
horizontal format while an item can be represented with a 
set of transactions containing it (a subset of T), so-called 
vertical format as shown in figure 1.  

Let ! be a taxonomy, a directed acyclic graph (tree) 
on the items. An edge in ! represents is-a (parent-child) 
relationship. When there is an edge from i1 to i2 in !, i1 is 
called a parent of i2 and i2 is called a child of i1. An item 
is called an ancestor of i, denoted î, when there is a path  

 
from î to i in !. In conversely, i is called a descendant of 
î. Only leaf items of a taxonomy are presented in the 
database. An example of taxonomy is shown in figure 2.  

A set IG ⊆  I is called a generalized itemset when IG 
does not contain both item and its ancestor. A t(IG) is 
defined as a set of transactions which contain IG as their 
subset. The tids of parent items are given by the union in 
tids of its child items. From figure 1 and 2, AB, AZ, AD 
are generalized itemsets while AX, XY are not, and t(X) = 
t(A) ∪  t(B). The support of IG, denoted σ(IG), is defined 
as a percentage of transactions in which IG occurs as a 
subset to the total transactions, thus σ(IG) = |t(IG)|/|T|. A 
generalized itemset is called generalized frequent itemset 
if its support is greater than or equal to a user-specified 
minimum support (minsup) threshold.  

A generalized association rule is an implication of 
the form R: I1→I2, where I1,I2 ⊆  I, I1∩I2=φ, and no item 
in I2 is an ancestor of any items in I1. For example, 
consider a database in figure 1 and a taxonomy in figure 
2, A→C and X→C are generalized association rules, 
while A→XC is not. The support of the rule, defined as 
σ(I1∪ I2), is the percentage of transactions containing both 
I1 and I2 to the total transaction. For example, the support 
of A→C is σ(A∪ C) = |t(A)∩t(C)| / |T| = {1345}∩{456}|/6 
= |{45}|/6 = 2/6 or 33%. The confidence of the rule, 
defined as σ(I1∪ I2)/σ(I1), is simply the conditional 
probability that a transaction contains I2, given that it 
contains I1. For example, the confidence of A→C is 
σ(A∪ C)/σ(A) = 2/4 or 50%. The rule is called 
generalized association rule if its confidence is greater 
than or equal to a user-specified minimum confidence 
(minconf) threshold. 

The task of GARM is to discover all rules from 
arbitrary levels of taxonomy that have support and 
confidence greater than or equal to minsup and minconf 

Figure 2.  A taxonomy on items in database 
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thresholds, respectively. This consists of two main steps : 
1) find all frequent itemsets, and 2) generate all high 
confidence rules. The latter step is relatively 
straightforward while the former is costly computation 
and I/O intensive. Thus, the problem of GARM can be 
reduced to the problem of finding frequent itemsets. In 
this work, we will focus on this problem. 

 
3.  Generalized itemset relationships 
 

The generalized itemsets contain both subset-superset 
relationship and parent-child relationship according to 
taxonomy that can be represented by the lattice of 
generalized itemsets and the taxonomies of k-generalized 
itemsets, respectively. 

 
3.1. Subset-superset relationship:  
   lattice of generalized itemsets 
 
Due to the space limitation, we assume that the reader 

is familiar with basic concepts of lattice theory. However, 
more details can be found in [6]. The formal concept 
analysis [7] and the formal concept of itemset lattice in 
association rule mining [8, 9, 10, 11] can be adapted to 
construct the generalized itemset lattice in GARM. 
Therefore, the following formal definitions are useful for 
describing the concept of generalized itemset lattice. 
Definition 1 (Set union and intersection according to 
taxonomy operation): The set union according to 
taxonomy operation, denoted by T!  is a binary 

operation, which is produced by the set union and 
contains only the most descendant items according to 
taxonomy. For example, AC T!  BC = ABC, AD T!  AW 

= AD, and UD T!  AW = AD. The set intersection 

according to taxonomy operation, denoted by T"  is a 

binary operation, which is produced by the set 
intersection and contains only the most descendant items 
according to taxonomy. For example, AC T"  BC = C, 

AD T"  AW = AD, and UD T"  AW = AD. 

Definition 2 (Lattice of generalized itemsets): The 
lattice of generalized itemsets is the partial order 
specified by the subset relation ⊆ , where the meet is 
given by the set intersection operation, and the join is 
given by the set union according to taxonomy operation 
as follows. For any X1, X2 ⊆  I, 

Meet :  X1 "  X2 = (X1 T"  X2) 

Join :   X1 #  X2 = (X1 T!  X2) 

 
 
 
 

3.2. Parent-Child Relationship:  
  taxonomies of k-generalized itemsets 
 
The useful definitions for defining the taxonomies of 

k-generalized itemsets are described as follows: 

Definition 3 (Ancestor-Descendant Itemset): Let X̂ , X 

⊆  I, The itemset X̂  is an ancestor itemset of X if | X̂ | =  

| X | and X̂ can be generated by replacing one or more 
items in X with one of their ancestors items. X is called a 

descendant itemset of X̂ . 

Definition 4 (Parent-Child Itemset): Let X̂ , X, X $ ⊆  I, 

X̂  is a parent itemset of X if there is no X $  

with X $ being an ancestor itemset of X and X̂ being an 

ancestor itemset of X̂ . X is called a child itemset of X̂ . 
Normally, the given taxonomy presents only the 

relation of single items (not itemsets) in the database. 
Let’s call 1-itemset taxonomy. The relation of these items 
is parent-child relationship according to taxonomy as 
shown by the connection lines between parent and child 
itemsets. By using parent-child relationship, we can 
extend the original taxonomy to express the k-generalized 
itemsets.  

Each k-generalized itemset has the parent-child 
itemset relationship. The tids of parent itemset equals to 
the union of tidsets of their child itemsets. For example, 
the itemset ACZ in 3-generalized itemset taxonomy has 
two child itemsets, i.e. ACD and ACE, by which t(ACZ) = 
t(ACD) ∪  t(ACE) = {5} ∪  {35} = {35}.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.3. Combination of two relationships 
 
The generalized itemsets can be shown in the complex 

view that combines both subset-superset relationship and 
parent-child relationship. For example, if we consider 
only the generalized items A, B, C, X, Y and the taxonomy 
as in figure 2. The complex view of generalized itemset 
lattice is shown in figure 3. The thick lines show the 
subset-superset relationship, and the dash arrow lines 
show the parent-child relationship by which the itemset 
located at the beginning of an arrow is the parent itemset 
of the itemset located at the end of the arrow. 

  Y         X            A            B         C   

XC AB AC BC

ABC 

  ∅  

Figure 3.  Combination of two relationships (A part) 



 

 

4. Discovery of generalized frequent itemsets 
 
Most of computational cost is to count the support of 

generalized itemsets for checking whether they are 
frequent or not, and checking for non-generating 
meaningless itemsets. To reduce this computational cost, 
the constraints and techniques are applied to optimize the 
number of generalized itemsets to be counted.  

 
4.1. Constraints on generalized itemsets 

 
Two lemmas are presented to justify the optimization.  

Lemma 1. For any X ⊆  I, if a generalized itemset X is 
frequent, all subsets of X are frequent. Dually, if a 
generalized itemset X is infrequent, all supersets of X are 
infrequent. 
Proof: Let X,Y, Z ⊆  I and Z = XY. The support of Z, σ(Z) 
= |t(Z)|=|t(X)∩t(Y)| must be less than or equal to the 
supports of its subsets, i.e. X and Y. Thus, if Z is frequent, 
X and Y are too. If both X and Y or either of them is 
infrequent, then neither does Z. 

Lemma 2. For any X, X̂ ⊆  I where X̂ is an ancestor 

itemset of X, if X̂ is frequent, then X is also frequent. 

Dually, if X is infrequent, X̂ is also infrequent. 

Proof: Let x, x̂ ∈  I and Y, Z, Ẑ ⊆  I. Assume that Z = xY, 

Ẑ = x̂ Y. x̂  is an ancestor item of x, and Ẑ is an ancestor 

itemset of Z. The support of Ẑ ,σ( Ẑ )=|t( Ẑ )|=|t( x̂ )∩t(Y)|, 
must be greater than or equal to the support of Z, σ(Z) =  
|t(Z)| = |t(x)∩t(Y)|, since the support of ancestor item x̂ is 
greater than or equal to the support of x. Thus, If 

Ẑ satisfies minsup (frequent), Z does also. If Z does not 

satisfy minsup (infrequent), Ẑ does also. 
 

For fast finding all generalized frequent itemsets, each 
lemma can be applied to each relationship of generalized 
itemsets. Lemma 1 concerns with the subset-superset 
relation which exists in the lattice of generalized itemset. 
Lemma 2 concerns with the ancestor itemset which exits 
in the parent-child relation in the taxonomies of k-
generalized itemsets. These two lemmas can be used to 
avoid generating infrequent itemsets. For efficient 
traversal, we try to generate only generalized frequent 
itemsets. From Lemma 1, all subsets of any generalized 
itemsets must be ensured that they are frequent before 
generating them. From Lemma 2, the ancestor itemsets 
must be frequent before generating their child itemsets.  
 
4.2. SET algorithm 

 
In this section, a new set enumeration named SET is 

proposed for finding all generalized frequent itemsets. 
With vertical database format, our method enumerates all 
generalized frequent itemsets using left-most depth first 
search. SET algorithm applies two efficient approaches 
that is: 1) Based on combination of two relationships, 
describing in section 3.3, we construct our novel set 
enumeration that can avoid intensive checking on 
meaningless itemsets. 2) Two constraints are 
implemented to prevent counting infreqeunt generalized 
itemsets. 

Using the vertical database in figure 1 and a taxonomy 
in figure 2 with minsup=1/6, our set enumeration starts 
with an empty set. Then, we add all generalized frequent 
items in the second level of the taxonomy, that are Y and 
Z, and form the second level of tree as shown in figure 4. 
The children of any itemsets are generated in two 
manners. First, we generate all tax-based child itemsets 
(based on parent-child relationship). Each generalized 

Figure 4.  A complete itemsets tree using a new set enumeration 
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child itemset is generated by replacing the right-most 
items of those itemsets with one of their children (if 
exists). Second, we generate all join-based child itemsets 
(based on subset-superset relationship) by joining those 
itemsets with all of their siblings that have higher orders. 
For example consider on itemset Y, we first generate tax-
based child itemsets that is X and C, and join-based child 
itemsets, i.e. YZ. In the same way, the tax-based child 
itemsets of X (i.e. A and B) and join-based child itemsets 
of X (i.e. XC and XZ, replacing YZ with X) are generated. 
This process recursively occur until no new generalized 
itemsets are generated. Finally, a complete itemset tree is 
constructed without excessive checking cost as in figure 4. 

The formal pseudo-code of SET are shown in figure 5. 
The main procedure is SET-MAIN and a function, called 
SET-EXTEND, creates a subtree follow by a proposed set 
enumeration. SET-EXTEND is executed recursively to 
create all descendant itemsets under the root itemsets. The 
Addlink function creates a child itemset of a parent 
itemset, such as Addlink(Y,X) creates a child itemset X of 
a parent itemset Y. The Last function in line 6 returns the 
last item of a generalized itemset. For example, Last(XY) 
returns Y. The Tax-Child function in line 7 returns the 
tax-based child itemsets of Fi. For example, to generate 
the tax-based child itemset of XZ, when D and E are child 
items of Z, the functions Tax-Child(XZ,D) and Tax-
Child(XZ,E) produce XD and XE, respectively. For the if 
statements in line 8 and 11 prune nodes with supports less 
than minsup (i.e. infrequent). 

5. Experimental Results 
 
The SET algorithm is evaluated and compared with 

Prutax. All algorithms are coded in C language and the 
experiments were made on a 1 GHz Pentium III with 1 
GHz of main memory running Windows 2000. 

As our preliminary experiments, the synthetic datasets 
are used. The synthetic datasets were automatically 

generated by the generator tool provided at IBM Almaden 
with slightly modified default values. The important 
default parameters in the datasets are shown in Table 1. 

 
Table 1. Default values of parameters in the datasets 

Depth-ratio ≈ (
probability that item in a rule comes from level i

probability that item comes from level i+1  ) [3] 

 
Six experiments were made to investigate the 

performance of SET algorithm compared with Prutax 
algorithm by changing a different parameter in each 
experiment. All parameters except the one being varied 
were set to their default values. Four parameters, i.e. 
minimum support, number of roots, fanout and depth-
ratio, are varied to investigate the algorithm. We also 
scale-up the datasets by varying two parameters, i.e. 
number of transactions and number of items. The 
experimental results are shown in figure 6. 

From figure 6, SET runs faster than Prutax with 
different minsup. The number of generalized frequent 
itemsets increase when lower minimum support. This 
cause effects to Prutax by increasing depths of hash tree 
and more time consuming for checking is needed, while 
SET needs not to checking. In case of less number of 
roots, the increasing of taxonomy levels effects to the 
large number of ancestor itemsets. SET doesn’t effect to 
this situation while Prutax requires more computational 
time for checking. With different fanouts, the child of 
each item in taxonomy are varied. The number of 
ancestor itemsets in lower fanouts is larger than  higher 
fanouts which makes SET performs better than Prutax. 
SET achieves approximately 4-6 times better than Prutax 
with depth-ratio variation. In the lower depth ratio, more 
rules have items come from the lower parts rather than 
the upper parts of taxonomy, such that the ancestor 
itemsets are increasing to gather the time consuming for 
checking in Prutax. 

In scale-up, SET performs well with large number of 
transactions, since the generalized frequent itemsets 
increase which make more intensive checking in Prutax. 
At last, we increase the number of items (including 
ancestor items) from 10,000 to 1,000,000 items. SET does 
not effect to this variation, since the items are sparseness 
in transactions with larger number of items. Thus, the 
number of generalized frequent itemsets is reduced. 

SET-MAIN (Database, Taxonomy, minsup): 
1.  Root = Null Tree  // Root node of set enumeration 
2.  Addlink(Root, All frequent items from second level of taxonomy) 
3.  SET-EXTEND(Root) 
 
SET-EXTEND(Father): 
4.   For i = 1 to numlinks(Father) 
5.       GTree=Null Tree 
6.       For each child of (Last(Fi) //Generate tax-based child itemset 
7.           C = Tax-Child(Fi, Child(Last(Fi))) 
8.            If supp(C) ≥ minsup then Addlink(GTree, C) 
9. For j = i+1 to numlinks(Father) //Generate join-based child itemset
10.     C = Fi ∪  Fj  
11.      If  supp(C) ≥ minsup then Addlink(GTree, C) 
12. Father.Links[i]Child = Gtree 
13.   If GTree!=Null then SET-EXTEND(Father.Links[i].Child)

Figure 5.  The pseudo-code of SET algorithm 

Parameter Default 
Number of transactions 
Average size of the transaction 
Number of items 
Number of roots 
Fanout 
Depth-ratio 
Minimum support 

1000K 
10 
100K 
250 
5 
1 
1% 



 

 

6. Conclusion 
 
In this paper we presented a theoretical framework of 

generalized itemsets based on two relationships: (1) 
subset-superset relationship (represented by lattice of 
generalized itemsets), and (2) parent-child relationship 
(represented by taxonomy of k-generalized itemsets). To 
efficiently discover all generalized frequent itemsets, we 
applied two constraints for these two relationships. We 
proposed a SET algorithm to enumerate all generalized 
frequent itemsets. SET uses the novel traversal on the 
combination of two relationships to avoid generating 
meaningless itemsets, and applies two constraints to 
prevent counting useless generalized itemsets that are 
infrequent. The investigation on experiments shows that 
our proposed set enumeration, SET algorithm, can reduce 
the cost of intensive checking as in the current most 
efficient algorithm, Prutax algorithm, and prevents 
overhead in enumerating generalized frequent itemsets. 
From these causes, SET algorithm can fasten finding all 
generalized frequent itemsets in generalized association 
rule mining task. 

 
7. Acknowledgment 
 
This paper has been supported by Thailand Research 
Fund (TRF) and NECTEC under project number NT-B-
06-4F-13-311. 

8. References 
 
[1] R. Agrawal, T. Imielinski, and A. Swami. “Mining 

Association Rules between Sets of Items in Large 
Databases”, ACM SIGMOD’93, Washington USA, 1993. 

[2] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining 
Association Rules”, VLDB ’94, Santiago Chile, 1994. 

[3] R. Srikant, and R. Agrawal, “Mining Generalized 
Association Rules”, VLDB ’95, Zürich Switzerland, 1995. 

[4] J. Hipp, A. Myka, R. Wirth, and U. Güntzer, “A new 
algorithm for faster mining of generalized association 
rules”, 2nd PKKD, 1998. 

[5]  C.L. Lui, and F.L. Chung, "Discovery of Generalized 
Association Rules with Multiple Minimum Supports", 4th 
PKDD, Lyon France, Sept. 2000, pp.510-515.  

[6] B.A. Davey, and H.A. Priestly, “Introduction to Lattices 
and Order”, Cambridge University Press, 1990. 

[7] B. Ganter, and R. Wille, “Formal Concept Analysis: 
Mathematical Foundations”, Springer-Verlag, 1999. 

[8] M.J. Zaki, S. Parthasaarathy, M. Ogihara, and W. Li, “New 
Algorithms for Fast Discovery of Association Rules”, 
KDD’97, Newport Beach California, 1997. 

[9] M.J. Zaki, and M. Ogihara, “Theoretical foundatations of 
association rules”, ACM SIGMOD Workshop on Research 
Issues in Data Mining and Knowledge Discovery, June 1998. 

[10] M.J. Zaki, and C.J. Hsiao, “CHARM: An efficient 
algorithm for closed association rule mining”, Technical 
Report 99-10, Computer Science Dept., Rensselaer 
Polytechnic Institute, October 1999. 

[11] M.J. Zaki, “Scalable algorithms for association mining”, 
IEEE Trans Knowledge & Data Engineering, 12(3):372-
390, 2000. 

Figure 6.  Experimental results 
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