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Abstract. In the area of knowledge discovery in databases, the gener-
alized association rule mining is an extension from the traditional asso-
ciation rule mining by given a database and taxonomy over the items in
database. More initiative and informative knowledge can be discovered.
In this work, we propose a novel approach of generalized closed itemsets.
A smaller set of generalized closed itemsets can be the representative of
a larger set of generalized itemsets. We also present an algorithm, called
cSET, to mine only a small set of generalized closed frequent itemsets
following some constraints and conditional properties. By a number of
experiments, the cSET algorithm outperforms the traditional approaches
of mining generalized frequent itemsets by an order of magnitude when
the database is dense, especially in real datasets, and the minimum sup-
port is low.

1 Introduction

The task of association rule mining (ARM) is one important topic in the area
of knowledge discovery in databases (KDD). ARM focuses on finding a set of all
subsets of items (called itemsets) that frequently occur in database records or
transactions, and then extracting the rules representing how a subset of items
influences the presence of another subset [1]. However, the rules may not provide
informative knowledge in the database. It may be limited with the granularity
over the items. For this purpose, generalized association rule mining (GARM)
was developed using the information of pre-defined taxonomy over the items.
The taxonomy may classify products (or items) by brands, groups, categories,
and so forth. Given a taxonomy where only leaf items present in the database,
more initiative and informative rules (called generalized association rules) can
be mined from the database. Each rule contains a set of items from any levels
of the taxonomy.

In the past, most previous works focus on efficient finding all generalized
frequent itemsets. As an early intensive work, Srikant et al. [2] proposed five
algorithms that apply the horizontal database format and breath-first search
strategy like Apriori algorithm. These algorithms waste a lot of time in multiple
scanning a database. As a more recent algorithm, Prutax, was proposed in [3] by
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applying a vertical database format to reduce the time needed in database scan-
ning. Nevertheless, a limitation of this work is the cost of checking whether their
ancestor itemsets are frequent or not using a hash tree. There exists a slightly
different task for dealing with multiple minimum supports as shown in [4, 5, 6].
A parallel algorithm was proposed in [7]. The recent applications of GARM were
shown in [8, 9]. Our efficient approach to mine all generalized frequent itemsets is
presented in [10]. Furthermore to improve time complexity of the mining process,
the concepts of closed itemsets have been proposed in [11, 12, 13]. The main idea
of these approaches focus to find only a small set of closed frequent itemsets,
which is the representative of a large set of frequent itemsets. This technique
helps us reduce the computational time. Thus, we intend to apply this tradi-
tional concept to deal with the generalized itemsets in GARM. In this work, we
propose a novel concept of generalized closed itemsets, and present an efficient
algorithm, named cSET, to mine only generalized closed frequent itemsets.

2 Problem Definitions

A generalized association rule can be formally stated as follows. Let I = {A, B,
C, D, E, U, V, W} be a set of distinct items, T = {1, 2, 3, 4, 5, 6} be a set of
transaction identifiers (tids). The database can be viewed into two formats, i.e.
horizontal format as shown in Fig. 1A, and vertical format as shown in Fig. 1B.
Fig. 1C shows the taxonomy, a directed acyclic graph on items. An edge in
a taxonomy represents is-a relationship. V is called an ancestor item of U, C, A
and B. A is called a descendant item of U and V. Note that only leaf items of
a taxonomy are presented in the original database. Intuitively, the database can
be extended to contain the ancestor items by adding the record of ancestor items
of which tidsets are given by the union of their children as shown in Fig. 1D.

A set IG ⊆ I is called a generalized itemset (GI) when IG is a set of items
where no any items in the set is an ancestor item of the others. The support of IG,
denoted by σ(IG), is defined as a percentage of the number of transactions in
which IG occurs as a subset to the total number of transactions. Only the GI
that has its support greater than or equal to a user-specified minimum support
(minsup) is called a generalized frequent itemset (GFI). A rule is an implication
of the form R: I1 �→ I2, where I1, I2 ⊆ I, I1 ∩ I2 = ∅, I1 ∪ I2 is GFI, and no
item in I2 is an ancestor of any items in I1. The confidence of a rule, defined as
σ(I1 ∪ I2)/σ(I1), is the conditional probability that a transaction contains I2,
given that it contains I1. The rule is called a generalized association rule (GAR)
if its confidence is greater than or equal to a user-specified minimum confidence
(minconf). The task of GARM can be divided into two steps, i.e. 1) finding all
GFIs and 2) generating the GARs. The second step is straightforward while the
first step takes intensive computational time. We try to improve the first step
by exploiting the concept of closed itemsets to GARM, and find only a small set
of generalized closed itemsets to reduce the computational time.
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Fig. 1. Databases and Taxonomy

3 Generalized Closed Itemset (GCI)

In this section, the concept of GCI is defined by adapting the traditional concept
of closed itemsets in ARM [11, 12, 13]. We show that a small set of generalized
closed frequent itemsets is sufficient to be the representative of a large set of
GFIs.

3.1 Generalized Closed Itemset Concept

Definition 1. (Galois connection): Let the binary relation δ ⊆ I × T be the
extension database. For an arbitrary x∈I and y∈T, xδy can be denoted when x is
related to it y in database. Let it X ⊆ I, and Y ⊆ T. Then the mapping functions,

t : I �→ T, t(X) = {y ∈ T | ∀x ∈ X, xδy}
i : T �→ I, i(Y) = {x ∈ I | ∀y ∈ Y, xδy}

define a Galois connection between the power set of I (P(I)) and the power set
of T (P(T)). The following properties hold for all X,X1,X2⊆I and Y,Y1,Y2⊆T:

1. X1 ⊆ X2 =⇒ t(X1) ⊇ t(X2)
2. Y1 ⊆ Y2 =⇒ i(Y1) ⊇ i(Y2)
3. X ⊆ i(t(X) and Y ⊆ t(i(Y))

Definition 2. (Generalized closure): Let X ⊆ I, and Y ⊆ T, the composition of
two mappings gcit:P(I) �→ P(I) and gcti: P(T) �→ P(T) are generalized closure
operator on itemset and tidset respectively. The mapping of gcit(X) = i ◦ t(X)
= i(t(X)) while gcti(Y) = t ◦ i(Y) = t(i(Y)).

Definition 3. (Generalized closed itemset and tidset): X is called a generalized
closed itemset (GCI) when X = gcit(X), and Y is called a generalized closed
tidset (GCT) when Y = gcti(Y).
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Fig. 2. Galois Lattice of Concepts

For X ⊆ I and Y ⊆ T, the generalized closure operators gcit and gcti satisfy
the following properties (Galois property):

1. Y ⊆ gcti(Y).
2. X ⊆ gcit(X).
3. gcit(gcit(X)) = gcit(X), and gcti(gcti(Y)) = gcti(Y).

For any GCI X, there exists a corresponding GCT Y, with the property that
Y = t(X) and X = i(Y). Such a GCI and GCT pair X × Y is called a concept. All
possible concepts can be formed a Galois lattice of concepts as shown in Fig. 2.

3.2 Generalized Closed Frequent Itemsets (GCFIs)

The support of a concept X × Y is the size of GCT (i.e. |Y|). A GCI is frequent
when its support is greater than or equal to minsup.

Lemma 1. For any generalized itemset X, its support is equal to the support of
its generalized closure (σ(X) = σ(gcit(X))).

Proof. Given X, its support σ(X) = |t(X)|/|T|, and the support of its generalized
closure σ(gcit(X)) = |t(gcit(X))|/|T|. To prove the lemma, we have to show that
t(X) = t(gcit(X)). Since gcti is the generalized closure operator, it satisfies the
first property that t(X) ⊆ gcti(t(X)) = t(i(t(X))) = t(gcit(X)). Thus t(X) ⊆
t(gcit(X)). The gcit(X) provides the GI that is the maximal superset of X and
has the same support as X. Then X ⊆ gcit(X), and t(X) ⊇ t(gcit(X)) due to the
Galois property [11]. We can conclude that t(X) = t(gcit(X)).

Implicitly, the lemma states that all GFIs can be uniquely determined by
the GCFIs since the support of any GIs will be equal to its generalized closure.
In the worst case, the number of GCFIs is equal to the number of GFIs, but
typically it is much smaller. From the previous example, there are 10 GCIs,
which are the representatives of a large amount of all GIs as shown in Fig. 2.
With minsup=50%, only 7 concepts (in bold font) are GCFIs.
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4 Algorithm

4.1 cSET Algorithm

In our previous work [10], all GFIs can be enumerated by applying two con-
straints, i.e. subset-superset and parent-child, on GIs for pruning. We propose
an algorithm called cSET algorithm, which specifies the order of set enumer-
ation by using these two constraints and the generalized closures to generate
only GCIs. Two constraints stated that only descendant and superset itemsets
of GFIs should be considered in the enumeration process. For generating only
GCFIs, the following conditional properties must be checked when generating
the child itemsets by joining X1 × t(X1) with X2 × t(X2).

1. If t(X1) = t(X2), then (1) replace X1 and children under X1 with X1 ∪ X2,
(2) generate taxonomy-based child itemsets of X1 ∪ X2, and (3) remove X2

(if any).
2. If t(X1) ⊂ t(X2), then (1) replace X1 with X1 ∪ X2 and (2) generate

taxonomy-based child itemsets of X1 ∪ X2.
3. If t(X1) ⊃ t(X2), then (1) generate join-based child itemset of X1 with X1

∪ X2, (2) add hash table with X1 ∪ X2, and (3) remove X2 (if any).
4. If t(X1) �= t(X2) and t(X1 ∪ X2) is not contain in hash, then generate

join-based child itemset of X1 with X1 ∪ X2.

Using the given example in Fig. 1 with minsup=50%, the cSET algorithm
starts with an empty set. Then, we add all frequent items in the second level of
the taxonomy, that are item V and W, and form the second level of the tree shown
in Fig. 3. Each itemset has to generate two kinds of child itemsets, i.e. taxonomy-
based and join-based itemsets, respectively. We first generate taxonomy-based
itemset by joining last items in itemsets by its child according to taxonomy.
One taxonomy-based itemset of V is VU. The first property holds for VU, which
results in replacing V with VU and then generating VUA and VUB. The second
taxonomy-based itemset is joined with the current itemset (VU), which produces
VUC. Again, the first property holds for VUC, which results in replacing VU and
the children in tree under VU with VUC. Next, the join-based child itemset of V,
VW, is generated. The third property holds for VW, which results in removing W
and then generating VW under V. In the same approach, the process recursively
occurs until no new GCFIs are generated. Finally, a complete itemset tree is
constructed without excessive checking cost as shown in Fig. 3. All remaining
itemsets in Fig. 3, except ones of crossed itemsets, are GCFIs.

4.2 Pseudo-code Description

The formal pseudo-code of cSET, extended from SET in [10], is shown below.
The main procedure is cSET-MAIN and a function, called cSET-EXTEND, creates
a subtree followed by a proposed set enumeration. cSET-EXTEND is executed re-
cursively to create all itemsets under the root itemsets. The NewChild function
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Fig. 3. Finding GCFIs using cSET with minsup=50%

creates a child itemset. For instance, NewChild(V,U) creates a child itemset VU
of a parent itemset V, and adds the new child in a hash table. The GenTaxChild
function returns the taxonomy-based child itemsets of that GI. Line 8-11 gener-
ates the join-based child itemsets. The function, called cSET-PROPERTY, checks
for four conditional properties of GCIs and makes the operations with the gen-
erated itemset. Following the cSET algorithm, we will get a tree of all GCFIs.

cSET-MAIN (Database,Taxonomy,minsup):

1. Root = Null Tree //Root node of set enumeration

2. NewChild(Root, GFIs from second level of taxonomy)

3. cSET-EXTEND(Root)

cSET-EXTEND(Father)

4. For each Fi in Father.Child

5. C = GenTaxChild(Fi) //Gen taxonomy-based child itemset

6. If supp(C) ≥ minsup then

7. cSET-PROPERTY(Nodes,C)

8. For j = i+1 to |Father.Child| //Gen join-based child itemset

9. C = Fi ∪ Fj

10. If supp(C) ≥ minsup then

11. cSET-PROPERTY(Nodes,C)

12. If Fi.Child �= NULL then cSET-EXTEND(Fi)

cSET-PROPERTY(Node,C)

13. if t(Fi) = t(Fj) and Child(Fi)= ∅ then //Prop.1

14. Remove(Fj); Replace(Fi) with C

15. else if t(Fi) ⊂ t(Fj) and Child(Fi)= ∅ then //Prop.2

16. Replace(Fi) with C

17. else if t(Fi) ⊃ t(Fj) then //Prop.3

18. Remove(Fj); if !Hash(t(C)) then NewChild(Fi,C)

19. else if !Hash(t(C)) then NewChild(Fi,C) //Prop.4
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5 Experimental Results

Since the novel concept of GCIs has never appeared in any researches, there are
no existing algorithms for finding GCFIs. In our experiment, the cSET algorithm
is evaluated by comparing with the current efficient algorithms for mining GFIs,
i.e. SET algorithm [10]. All algorithms are coded in C language and the exper-
iment was done on a 1.7GHz PentiumIV with 640Mb of main memory running
Windows2000. The syntactic and real datasets are used in our experiment. The
syntactic datasets are automatically generated by a generator tool from IBM
Almaden with some slightly modified default values. Two real datasets from
the UC Irvine Machine Learning Database Repository, i.e. mushroom and chess,
are used with our own generated taxonomies. The original items contain in the
leaf-level of taxonomy.

Table. 1 shows the comparison of using SET and cSET to enumerate all GFIs
and GCFIs, respectively. In real datasets, the number of GCFIs is much smaller
than that of GFIs. With the same datasets, the ratio of the number of GFIs to
that of GCFIs typically increases when we lower minsup. The higher the ratio
is, the more time reduction is gained. The ratio can grow up to around 7,915
times, which results in reduction of running time around 3,878 times. Note that
in syntactic datasets, the number of GFIs is slightly different from the number of
GCFIs. This indicates that the real datasets are dense but the syntactic datasets
are sparse. This result makes us possible to reduce more computational time by
using cSET in real situations.

Table 1. Number of itemsets and Execution Time (GFIs vs. GCFIs)
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6 Conclusion and Further Research

A large number of generalized frequent itemsets may cause of high computa-
tional time. Instead of mining all generalized frequent itemsets, we can mine
only a small set of generalized closed frequent itemsets and then result in reduc-
ing computational time. We proposed an algorithm, named cSET, by applying
some constraints and conditional properties to efficiently enumerate only gener-
alized closed frequent itemsets. The advantage of cSET becomes more dominant
when minimum support is low and/or the dataset is dense. This approach makes
us possible to mine the data in real situations. In further research, we intend to
propose a method to extract only a set of important rules from these generalized
closed frequent itemsets.
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