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SUMMARY Assessment of discovered patterns is an impor-
tant issue in the field of knowledge discovery. This paper presents
an evaluation method that utilizes citation (reference) informa-
tion to assess the quality of discovered document relations. With
the concept of transitivity as direct/indirect citations, a series
of evaluation criteria is introduced to define the validity of dis-
covered relations. Two kinds of validity, called soft validity and
hard validity, are proposed to express the quality of the discov-
ered relations. For the purpose of impartial comparison, the ex-
pected validity is statistically estimated based on the generative
probability of each relation pattern. The proposed evaluation is
investigated using more than 10,000 documents obtained from a
research publication database. With frequent itemset mining as a
process to discover document relations, the proposed method was
shown to be a powerful way to evaluate the relations in four as-
pects: soft/hard scoring, direct/indirect citation, relative quality
over the expected value, and comparison to human judgment.
key words: document relations; frequent itemset mining; cita-
tion matrix; quality evaluation; document relation evaluation

1. Introduction

Nowadays, it has become difficult for researchers to fol-
low the state of the art in their area of interest since
the number of research publications has increased con-
tinuously and quickly. Such a large volume of informa-
tion brings about serious hindrance for researchers to
position their own works against existing works, or to
find useful relations between them [1]–[3]. Although the
publication of each work may include a list of related ar-
ticles (documents) as its reference, it is still impossible
to include all related works due to either intentional rea-
sons (e.g., limitation of paper length) or unintentional
reasons (e.g., näıvely unknown). Enormous meaningful
connections that permeate the literatures may remain
hidden.

Growing from different fields, known as literature-
based discovery, the approach of discovering hidden and
significant relations within a bibliographic database has
become popular in medical-related fields [4], [5]. As
a content-based approach with manual and/or semi-
automatic processes, a set of topical words or terms
are extracted as concepts and then utilized to find con-
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nections among two literatures. Due to the simplicity
and practicality of this approach, it was used in several
areas by its succeeding works [6]–[8]. Some works pro-
posed citation analysis based on so-called bibliographic
coupling [1], and co-citation [2]. While they were suc-
cessfully applied in several works [9]–[11] to obtain top-
ical related documents, they are not fully automated
and have a lot of labor intensive tasks. Based on as-
sociation rule mining, an automated approach to dis-
cover relations among documents in a research publica-
tion database was introduced [12]. Mapping a term (a
word or a pair of words) to a transaction in a transac-
tional database, the topic-based relations among scien-
tific publications are revealed under various document
representations. Although the work expressed the first
attempt to find document relations automatically by
exploiting terms in documents, it utilized only simple
evaluation without elaborate consideration.

There has been little exploration of how to evalu-
ate document relations discovered from text collections.
Most works in text mining utilized a dataset, which in-
cludes both queries and their corresponding correct an-
swers, as a test collection. They usually defined certain
measures and used them for performance assessment on
the test collection. For instance, classification accuracy
is applied for assessing the class to which a document
is assigned in text categorization (TC) [13] while re-
call and precision are used to evaluate retrieved doc-
uments with regard to given query keywords in infor-
mation retrieval (IR) [14]. As a more naive evaluation
method, human judgment have been used in more re-
cent works on mining web documents, such as HITS
[15] and PageRank [16], where there is no standard
dataset. However, this manual evaluation is a labor
intensive task and quite subjective.

Compared to TC and IR, the evaluation of discov-
ered document relations is difficult and complicated.
For one reason, the process to prepare correct answers
in the test collection is labor-intensive with the expo-
nential number of candidate relations (a relation may
involve more than two documents) to be evaluated.
Moreover, there is a lack of standard criteria for evalu-
ating document relations. So far, while there have been
several benchmark datasets, e.g., UCI Data Reposi-
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tory∗, WebKB∗∗, TREC data∗∗∗, for TC and IR tasks,
there is no standard dataset that is used for the task of
document relation discovery.

Toward resolving these issues, this work proposes
a method to use citation information in research publi-
cations as a source for evaluating the discovered docu-
ment relations. Conceptually, the relations among doc-
uments can be formulated as a subgraph where each
node represents a document and each arc represents a
relation between two documents. Based on this for-
mulation, a number of scoring methods are introduced
for evaluating the discovered document relations in or-
der to reflect their quality. Moreover, this paper also
invents a generative probability that is derived from
probability theory and uses it to compute an expected
score to capture objectively how good evaluation results
are.

Section 2 presents a method for discovering docu-
ment relations using frequent itemset mining. In Sec-
tion 3, a series of measures called v-validity is defined on
direct/indirect citations formulated by so-called order
accumulative citation matrices. Soft validity and hard
validity as well as the method to estimate the expected
validity are also proposed in this section. Section 4 dis-
plays the evaluation results on various document repre-
sentations including the comparison with the statistical
generative probability and human judgment. Finally, a
conclusion is made in Section 5.

2. Document Relation Discovery using Fre-
quent Itemset Mining

In the past, frequent itemset mining (FIM) was well-
known as a process to find co-occurrences (frequent pat-
terns) in a database. As a prominent technique in asso-
ciation rule mining (ARM), it is useful in various appli-
cations such as market basket analysis, fraud detection,
data classification, etc. ARM was first applied to dis-
cover document relations among scientific publications
in [12]. By encoding documents as items, and terms in
the documents as transactions, a frequent itemset that
we can find will be in the form of “a set of documents”
which share a large number of terms. Each discovered
document set (for short, docset) can be assumed as a
content-based relation among documents where this re-
lation is introduced by the coincident terms.

A formulation of the ARM task on document rela-
tion discovery can be summarized as follows. Let D be
a set of documents (items) where D = {d1, d2, ..., dm},
and T be a set of terms (transactions) where T =
{t1, t2, ..., tn}. Also let δ(di, tj) represents the existence
(0 or 1) of a term tj in a document di. A subset of D is
called a docset whereas a subset of T is called a termset.
Furthermore, a docset X = {x1, x2, ..., xk} ⊂ D with

∗http://www.ics.uci.edu/∼mlearn/MLRepository.html
∗∗http://www.webkb.org/

∗∗∗http://trec.nist.gov/data.html

k documents is called k-docset (or a docset with the
length of k). The support of X is defined as follows.

sup(X) =
∑

n

j=1
mink

i=1δ(xi,tj)∑
n

j=1
maxm

i=1δ(di,tj)

Here, an X that has a support greater than a pre-
defined minimum support is called a frequent k-docset.
We will use the term “docset” in the meaning of “fre-
quent docset” and “document relation” interchange-
ably.

In the document-term database, a set of terms
used for representing the documents has some effects
on the characteristic of discovered docsets. Therefore,
it is necessary to investigate document representation
that is suitable for discovering high-quality document
relations. In several text processing applications, three
schemes of term definition, i.e., n-gram, stemming and
stopword removal, were successfully applied. Different
combinations of these schemes result in different rep-
resentations for a document-term database. With dif-
ferent representations, one will obtain different sets of
document relations. Here, we need some kind of eval-
uation to assess which document relations are better.
Toward resolving this issue, the next section presents
the evaluation method which can be applied to mea-
sure the quality of any document relations based on
some reasonable criteria.

3. Empirical Evaluation using Citation Infor-
mation

This section presents a method to use citations (refer-
ences) among technical documents in a scientific publi-
cation collection to evaluate the quality of the discov-
ered document relations. Intuitively, two documents
are expected to be related under one of the three basic
situations: (1) one document cites to the other (direct
citation), (2) both documents cite to the same doc-
ument (bibliographic coupling) [2] and (3) both doc-
uments are cited by the same document (co-citation)
[1]. An analysis of citation has been applied for several
interesting applications [9]–[11].

Besides these basic situations, two documents may
be related to each other via a more complicated con-
cept called transitivity. For example, if a document A
cites to a document B, and the document B cites to a
document C, then one could assume a transitive rela-
tion between A and C. In this work, with the transi-
tive property, the concept of order citation is originally
proposed to express an indirect connection between two
documents. With the assumption that a direct or indi-
rect connection between two documents implies topical
relation among them, such connection can be used for
evaluating the results of document relation discovery.

In the rest of this section, introductions of the u-
th order citation and v-th order accumulative citation
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Fig. 1 An example of a citation graph.

matrix are given. Then, the so-called validity is pro-
posed as a measure for evaluating discovered docsets
using information in the citation matrix. Finally, the
expected validity is mathematically defined by exploit-
ing the concept of generative probability and estima-
tion.

3.1 The Citation Graph and Its Matrix Representa-
tion

Conceptually citations among documents in a scientific
publication collection form a citation graph, where a
node corresponds to a document and an arc corresponds
to a direct citation of a document to another document.
Based on this citation graph, an indirect citation can
be defined using the concept of transitivity. The for-
mulation of direct and indirect citations can be given in
the terms of the u-th order citation and the v-th order
accumulative citation matrix as follows.

Definition 1: (the u-th order citation): Let D be
a set of documents (items) in the database. For x, y ∈
D, y is the u-th order citation of x iff the number of
arcs in the shortest path between x to y in the citation
graph is u (≥ 1). Conversely, x is also called the u-th
order citation of y.

For example, given a set of six documents
d1, d2, d3, d4, d5, d6 ∈ D and a set of six citations, d1

to d2, d2 to d3 and d5, d3 to d5, and d4 to d3 and d6,
the citation graph can be depicted in Figure 1. In the
figure, d1, d3 and d5 is the first, d4 is the second, and
d6 is the third order citation of the document d2. Note
that although there is a direction for each citation, it
is not taken into account since the task is to detect a
document relation where the citation direction is not
concerned. Moreover, using only textual information
without explicit citation or temporal information, it is
difficult to find the direction of the citation among any
two documents.

Based on the concept of the u-th order citation, the
v-th order accumulative citation matrix is introduced
to express a set of citation relations stating whether
any two documents can be transitively reached by the
shortest path shorter than v + 1.

Definition 2: (the v-th order accumulative cita-
tion matrix): Given a set of n distinct documents,
the v-th order accumulative citation matrix (for short,
v-OACM) is an n × n matrix, each element of which

doc. d1 d2 d3 d4 d5 d6
d1 [1,1,1] [1,1,1] [0,1,1] [0,0,1] [0,1,1] [0,0,0]
d2 [1,1,1] [1,1,1] [1,1,1] [0,1,1] [1,1,1] [0,1,1]
d3 [0,1,1] [1,1,1] [1,1,1] [1,1,1] [1,1,1] [0,1,1]
d4 [0,0,1] [0,1,1] [1,1,1] [1,1,1] [0,1,1] [1,1,1]
d5 [0,1,1] [1,1,1] [1,1,1] [0,1,1] [1,1,1] [0,1,1]
d6 [0,0,0] [0,0,1] [0,1,1] [1,1,1] [0,0,1] [1,1,1]

Fig. 2 The 1-, 2- and 3-OACMs: each elements in the table is
represented by a set of values [δ1, δ2, δ3].

represents the citation relation δv between two docu-
ments x, y where δv(x, y) = 1 when x is the u-th order
citation of y and u ≤ v, otherwise δv(x, y) = 0. Note
that δv(x, y) = δv(y, x) and δv(x, x) = 1.

For the previous example, the 1-, 2- and 3-OACMs can
be created as shown in Figure 2. The 1-OACM can be
straightforwardly constructed from the set of the first-
order citation (direct citation). The (v + 1)-OACM
(mathematically denoted by a matrix Av+1) can be re-
cursively created from the operation between v-OACM
(Av) and 1-OACM (A1) according to the following for-
mula.

av+1
ij = ∨n

k=1(a
v
ik ∧ a1

kj) (1)

where ∨ is an OR operator, ∧ is an AND operator, av
ik

is the element at the i-th row and the k-th column of
the matrix Av and a1

kj is the element at the k-th row
and the j-th column of the matrix A1. Note that any
v-OACM is a symmetric matrix.

3.2 Validity: Quality of Document Relations

This section defines the validity which is used as a mea-
sure for evaluating the quality of the discovered docsets.
The concept of validity calculation is to investigate how
documents in a discovered docset are related to each
other according to the citation graph. Based on this
concept, the most preferable situation is that all docu-
ments in a docset directly cite to and/or are cited by
at least one document in that docset, and thereafter
they form one connected group. Since in practice only
few references are given in a document, it is quite rare
and unrealistic that all related documents cite to each
other. As a generalization, we can assume that all doc-
uments in a docset should cite to and/or are cited by
each other within a specific range in the citation graph.
Here, the shorter the specific range is, the more re-
strictive the evaluation becomes. With the concept of
v-OACM stated in the previous section, we can realize
this generalized evaluation by a so-called v-th order va-
lidity (for short, v-validity), where v corresponds to the
specific range mentioned above.

Regarding the criteria of evaluation, two alterna-
tive scoring methods can be employed for defining the
validity of a docset. As the first method, a score is com-
puted as the ratio of the number of citation relations
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in which the most popular document in a docset con-
tains to its maximum. The most popular document is
a document that has the most relations with the other
documents in the docset. Note that, it is possible to
have more than one popular document in a docset. The
score calculated by this method is called soft validity.

In the second method, a more strict criterion for
scoring is applied. The score is set to 1 only when the
most popular document connects to all documents in
the docset. Otherwise, the score is set to 0. This score
is called hard validity. The formulation of soft v-validity
and hard v-validity of a docset X (X ⊂ D), denoted by
Sv

S(X) and Sv
H(X) respectively, are defined as follows.

Sv
S(X) =

maxx∈X(
∑

y∈X,y �=x δv(x, y))
|X | − 1

(2)

For simplicity, we denote a numerator in the above
equation with maxv(X). Then,

Sv
H(X) =

{
1 , if maxv(X) = |X | − 1
0 , otherwise (3)

Here, δv(x, y) is the citation relation defined by Def-
inition 2 in Section 3.1. It can be observed that the
soft v-validity of a docset is ranging from 0 to 1, i.e.,
0 ≤ Sv

S(X) ≤ 1 while the hard v-validity is a binary
value of 0 or 1. In both cases, the v-validity achieves
the minimum (i.e., 0) when there is no citation rela-
tion among any document in the docset. On the other
hand, it achieves the maximum (i.e., 1) when there is
at least one document that has a citation relation with
all documents in a docset. Intuitively, the validity of
a bigger docset tends to be lower than a smaller doc-
set since the probability that one document will cite to
and/or be cited by other documents in the same docset
becomes lower.

In practice, instead of an individual docset, the
whole set of discovered docsets needs to be evaluated.
The easiest method is to exploit an arithmetic mean.
However, it is not fair to directly use the arithmetic
mean since a bigger docset tends to have lower validity
than a smaller one. We need an aggregation method
that reflects docset size in the summation of validi-
ties. One of reasonable methods is to use the concept
of weighted mean, where each weight reflects the doc-
set size. Therefore, set soft v-validity and set hard v-
validity for a set of discovered docsets F , denoted by
SS

v
(F) and SH

v
(F), respectively, can be defined as

follows.

SS
v
(F) =

∑
X∈F wX × Sv

S(X)∑
X∈F wX

(4)

SH
v
(F) =

∑
X∈F wX × Sv

H(X)∑
X∈F wX

(5)

where wX is the weight of a docset X . In this work,

wX is set to |X | − 1, the maximum value that the va-
lidity of a docset X can gain. For example calculation,
given the 1-OACM in Figure 2 and F = {d1d2, d1d2d4},
the set soft 1-validity of F (i.e., SS

1
(F)) equals to

(1× 1
1 )+(2× 1

2 )

1+2 = 2
3 while the set hard 1-validity of F

(i.e., SH
1
(F)) is (1× 1

1 )+(2×0)

1+2 = 1
3 .

3.3 The Expected Validity

From Equations 2 and 3, the evaluation of discovered
docsets will depend on the citation relation (δv), which
is represented by v-OACMs. As stated in the previ-
ous section, the lower v is, the more restrictive the
evaluation becomes. Therefore to compare the eval-
uation based on different v-OACMs, we need to declare
a value, regardless of the restriction of evaluation, to
represent the expected validity of a given set of docsets
under each individual v-OACM. This section describes
the method to estimate the theoretical validity of the
set of docsets based on probability theory. Towards this
estimation, the probability that two documents are re-
lated to each other under a v-OACM (later called base
probability), need to be calculated. This probability is
derived by the ratio of the number of existing citation
relations to the number of all possible citation relations
(i.e., 2 ×

(|D|
2

)
= |D|2 − |D|) as shown in the following

equation.

pv =

∑
x,y∈D,x �=y δv(x, y)

|D|2 − |D| (6)

For example, using the citation relation in Fig-
ure 2, the base probabilities for 1-, 2-, and 3-OACMs
are 0.40 (12/30), 0.73 (22/30) and 0.93 (28/30), re-
spectively. Note that the base probability of a higher-
OACM is always higher than or equal to that of a lower-
OACM. Using the concept of expectation, the expected
set v-validity (E(Sv

(F))) can be formulated as follows.

E(Sv
(F)) =

∑
X∈F wX × E(Sv(X))∑

X∈F wX
(7)

E(Sv(X)) =
∑

∀Yi,Yi∈β(X)

(S(Yi) × P v(Yi)) (8)

where E(Sv(X)) is the expected v-validity of a docset
X , β(X) is the set of all possible citation patterns for
X , S(Yi) is the invariant validity of Yi, and P v(Yi) is
the generative probability of the pattern Yi estimated
from the base probability under v-OACM (pv). The-
oretically, finding possible patterns of a docset can be
transformed to the set enumeration problem. Given a
docset with the length of k (k-docset), there are 2(n

2 )

possible citation patterns.
With different scoring methods, an invariant valid-

ity is individually defined on each criteria regardless of
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Fig. 3 All possible citation patterns for a 3-docset.

the v-OACM. To simplify this, the notation S(Yi) is re-
placed by SS(Yi) and SH(Yi) for the invariant validity
calculated from soft validity and hard validity, respec-
tively. Similar to Equation 2, an invariant validity of
Yi for soft validity is defined as follows:

SS(Yi) =
maxx∈Yi(

∑
y∈Yi,y �=x δYi(x, y))
|Yi| − 1

(9)

For simplicity, we denote a numerator in the above
equation by maxYi(Yi). With another case derived
from Equation 3, an invariant validity of Yi based on
hard validity is given by:

SH(Yi) =
{

1 , if maxYi(Yi) = |Yi| − 1
0 , otherwise (10)

In the above equations, δYi(x, y) is the citation relation
among two documents x and y in the citation pattern
Yi where δYi(x, y) = 1 when citation relation exists,
otherwise δYi(x, y) = 0. Note that all Yi’s have the
same docset but represent different citation patterns.
The following shows two examples of how to calculate
the expected v-validity for 2-docsets and 3-docsets. For
simplicity, the expected v-validity based on soft validity
is firstly described, and the one based on hard validity
is discussed later.

With the simplest case, there are only two possi-
ble citation patterns for a 2-docset. Therefore, the ex-
pected v-validity based on soft validity of any 2-docset
(X) can be calculated as follows.

E(Sv
S(X)) =

1
1
pv +

0
1
(1 − pv) = pv (11)

In the case of a 3-docset, there are eight possible pat-
terns as shown in Figure 3. From Equation 9, we can
calculate the invariant validity based on soft validity
(SS) of each pattern as follows. The first to fourth pat-
terns have the invariant validity of 1 (i.e., 2

2 ). The fifth
to seventh patterns gain the invariant validity of 0.5
(i.e., 1

2 ) while the last pattern occupies the invariant

validity of 0 (i.e., 0
2 ). The generative probability of the

first pattern is p3
v since there are three citation relations,

and that of the second to the fourth patterns equal to
p2

v(1−pv) since there are two citation relations and one
missing citation relation. Regarding the citation pat-
tern, the generative probabilities of the other patterns
can be calculated in the same manner. Applying Equa-
tion 8 and the generative probabilities shown in Figure
3, the expected v-validity based on soft validity can be
calculated as follows.

E(Sv
S(X)) = 1(

2
2
p3

v) + 3(
2
2
p2

v(1 − pv))

+3(
1
2
pv(1 − pv)2) + 1(

0
2
(1 − pv)3) (12)

Here, the first term comes from the first pattern, the
second term is derived from the second to the fourth
patterns, the third term is obtained by the fifth to the
seventh patterns and the last term is for the eighth
pattern.

With another criterion of hard validity, the ex-
pected v-validity for a 2-docset is still the same but
a difference occurs for a 3-docset. By Equation 10, the
invariant validity based on hard validity (SH) equals to
1 for the first to fourth patterns and becomes 0 for the
other patterns. The expected v-validity for a 3-docset
based on hard validity is then reduced to

E(Sv
H(X)) = 1(1 × p3

v) + 3(1 × p2
v(1 − pv)) (13)

All above examples illustrate the calculation of the
expected validity of only one docset. To calculate the
expected v-validity of several docsets in a given set,
the weighted mean of their validities can be derived
by Equation 7. The outcome will be used as the ex-
pected value for evaluating the results obtained from
our method for discovering document relations.

4. Experimental Settings and Results

This section presents a set of experimental results when
the quality of discovered docsets is investigated under
several empirical evaluation criteria. The four main
objectives are (1) to investigate characteristic of the
evaluation by soft validity and hard validity on docsets
discovered from different document representations in-
cluding their minimum support thresholds and mining
time, (2) to study the quality of discovered relations
when using either direct citation or indirect citation as
the evaluation criteria, (3) to present the relative qual-
ity of a discovered relation when it is compared to its
statistical expected value, and (4) to show the quality
of discovered relations evaluated by human and com-
pare the results with those from the proposed evalua-
tion method.

Towards the first objective, several term definitions
are explored in the process of encoding the documents.
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To define terms in a document, techniques of n-gram,
stemming and stopword removal can be applied. The
discovered docsets are ranked by their supports, and
then the top-N ranked relations are evaluated using
both soft validity and hard validity. Here, the value of
N can be varied to observe the characteristic of the dis-
covered docsets. For the second objective, the evalua-
tion is performed based on various v-OACMs, where the
1-OACM considers only direct citation while a higher-
OACM also includes indirect citation as shown in Sec-
tion 3. Intuitively, the evaluation becomes less restric-
tive when a higher-OACM is applied as the calibration.
To fulfill the third objective, the expected set validity
for each set of discovered relations is calculated accord-
ing to the method shown in Section 3.3. Compared
to this expected validity, the significance of discovered
docsets is investigated. In the last objective, a set of
discovered relations is sampled and evaluated by letting
a number of experts rate the relatedness of documents
in each relation. The result can be used to confirm the
potential of our proposed evaluation method.

To implement a mining engine for document re-
lation discovery, the FP-tree algorithm, originally in-
troduced in [17], is modified to mine docsets in a
document-term database. In this work, instead of asso-
ciation rules, frequent itemsets are considered. Since a
1-docset contains no relation, it is negligible and then
omitted from our evaluation. That is, only the discov-
ered docsets with at least two documents are consid-
ered. The experiments were performed on a Pentium
IV 2.4GHz Hyper-Threading with 1GB physical mem-
ory and 2GB virtual memory running Linux TLE 5.0
as an operating system. The preprocessing steps i.e.,
n-gram construction, stemming and stopword removal,
consume trivial computational time.

4.1 Evaluation Material

There is no gold standard dataset that can be used
for evaluating the results of document relation discov-
ery. To solve this problem, an evaluation material is
constructed from the scientific research publications in
the ACM Digital Library†. This dataset was originally
used in our previous work [12]. As a seed of construct-
ing the citation graph, 200 publications are retrieved
from each of the three computer-related classes, coded
by B (Hardware), E (Data) and J (Computer). With
the PDF format, each publication is attached with an
information page in which citation (i.e., reference) in-
formation is provided. The reference publications ap-
pearing in these 600 publications are further collected
and added into the evaluation dataset. In the same
way, the publications referred to by these newly col-
lected publications are also gathered and appended into
the dataset. Finally, in total there are 10,817 research

†http://www.portal.acm.org

publications collected as the evaluation material. After
converting these collected publications to ASCII text
format, the reference (normally found at the end of
each publication text) is removed by a semi-automatic
process, such as using clue words of “References” and
“Bibliography”. With the use of the information page
attached to each publication, the 1-OACMs can be con-
structed and used for evaluating the discovered docsets.
Refer to Equation 1, the v-OACM can be constructed
from (v − 1)-OACM and 1-OACM. In our dataset, the
average number of citation relations per document is
8 for 1-OACM, 148 for 2-OACM, and 1,008 for 3-
OACM. It takes 1.14 seconds for generating 2-OACM
from 1-OACM while it takes 15.83 seconds to generate
3-OACM from 2-OACM.

Together with text preprocessing, the BOW library
[18] is used as a tool for constructing a document-term
database. Using a list of 524 stopwords [19], common
words, such as a, an, is and for, are discarded. Besides
these stopwords, terms with very low frequency are also
omitted. These terms are numerous and usually negligi-
ble. Moreover, a term occurring less than three times is
considered to be insignificant and thus pruned. By this
process, the number of terms is dramatically reduced
by a factor of 7 to 13. For instance, in case of apply-
ing non-stemming, stopword removal and bigram, the
number of terms is reduced from 3,866,543 to 283,673.
From our observation, the remaining terms in a docu-
ment still preserve the document contents. In the case
of using bigrams as terms, all bigrams are first gener-
ated from the original text, and then the bigrams which
contain stopwords or have low frequency are pruned.
This process will help us to generate pairs of consecu-
tive words, e.g., compound nouns, without the insertion
of stopwords.

4.2 Experimental Results

As stated at the beginning of this section, several term
definitions can be used as factors to obtain various pat-
terns of document representation. In our experiment,
eight distinct patterns are explored. Each pattern is de-
noted by a 3-digit code. The first digit represents the
usage of n-gram, where ‘U’ stands for unigram and ‘B’
means bigram. The second digit has a value of either
‘O’ or ‘X’, expressing whether the stemming scheme
is applied or not. Also the last digit is either ‘O’ or
‘X’, telling us whether the stopword removal scheme is
applied or not. For example, ‘UXO’ means document
representation generated by unigram, non-stemming
and stopword removal. Table 1 expresses the set 1-
validity (soft validity/hard validity) of the discovered
docsets when various document representations are ap-
plied. The minimum support and the execution time of
mining for each document representation to discover a
specified number of top-N ranked docsets are also given
in the table.
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Table 1 Set 1-validity for various top-N rankings of discovered docsets, their supports
and mining time: soft validity/hard validity (upper: bigram, lower: unigram).
minsup: minimum support (× 10−2) time: mining time (seconds)

Set Validity (%)
N BXO BOO BXX BOX
1000 45.47/43.95 46.14/44.33 6.29/6.29 7.09/7.09

minsup=0.53,time=174.49 minsup=0.67,time=155.92 minsup=3.94,time=442.95 minsup=4.76,time=402.14

5000 29.31/23.88 29.13/27.24 3.83/3.33 3.88/3.59
minsup=0.35,time=188.88 minsup=0.47,time=166.96 minsup=3.15,time=612.82 minsup=3.79,time=570.65

10000 24.49/19.33 24.40/20.50 3.13/2.33 3.20/2.63
minsup=0.32,time=189.52 minsup=0.39,time=170.17 minsup=2.84,time=681.40 minsup=3.42,time=627.61

50000 19.29/ 6.36 18.88/ 8.62 2.46/0.98 2.36/1.19
minsup=0.25,time=195.39 minsup=0.29,time=176.48 minsup=2.31,time=816.43 minsup=2.71,time=767.25

100000 19.51/ 3.67 18.40/ 4.11 2.30/0.63 2.18/0.77
minsup=0.21,time=212.14 minsup=0.28,time=176.57 minsup=2.13,time=862.84 minsup=2.48,time=832.77

Average 27.61/19.64 27.39/20.96 3.60/2.71 3.74/3.05
minsup=0.33,time=192.08 minsup=0.42,time=169.22 minsup=2.87,time=683.29 minsup=3.43,time=640.08

Set Validity (%)
N UXO UOO UXX UOX
1000 3.88/3.78 2.36/2.26 2.79/2.79 1.76/1.76

minsup=32.72,time=122.49 minsup=46.35,time=74.77 minsup=55.61,time=160.98 minsup=74.78,time=89.39

5000 3.77/3.35 2.38/1.99 2.37/2.28 1.55/1.48
minsup=26.98,time=240.57 minsup=40.04,time=175.72 minsup=48.46,time=359.18 minsup=66.84,time=198.16

10000 3.47/2.63 2.16/1.53 2.09/1.75 1.35/1.11
minsup=24.68,time=312.69 minsup=37.63,time=231.41 minsup=45.66,time=466.00 minsup=63.76,time=277.67

50000 2.78/1.44 1.75/0.74 1.68/0.84 1.12/0.49
minsup=19.95,time=478.97 minsup=32.26,time=412.79 minsup=39.64,time=808.61 minsup=57.08,time=539.55

100000 2.71/1.02 1.68/0.48 1.66/0.57 1.14/0.32
minsup=18.37,time=564.65 minsup=30.40,time=531.10 minsup=37.40,time=1008.38 minsup=54.55,time=691.02

Average 3.32/2.44 2.06/1.40 2.12/1.64 1.38/1.03
minsup=24.54,time=343.87 minsup=37.34,time=285.16 minsup=45.35,time=560.63 minsup=63.40,time=359.16

From the table, some interesting observations can
be made. First, with the same document representa-
tion, soft validity is always higher than or equal to
hard validity since the former is obtained by less re-
strictive evaluation than the latter (see Equation 2 and
3). Both validities involve valid relations between any
pair of documents in a discovered docset. A relation
between two documents is called valid when there is a
link between those two documents under the v-OACM
(v=1 in this experiment). The evaluation based on soft
validity focuses on the probability that any two doc-
uments in a docset will occupy a valid relation. On
the other hand, the evaluation based on hard validity
concentrates on the probability that at least one docu-
ment must have valid relations with all of the other
documents. For example, in the case of top-100000
ranking with the ‘BXO’ representation (as shown in
Table 1), 19.51% of the relations in the discovered doc-
sets are valid while only 3.67% of the discovered doc-
sets are perfect, i.e., there is at least one document
that contains valid relations with all of the other docu-
ments in the certain docset. Second, in every document
representation, both soft validity and hard validity be-
come lower when more ranks (i.e., top-N ranking with
a larger N) are considered. As an implication of this
result, our proposed evaluation method indicates that
better docsets are located at higher ranks. Third, given
two representations, say A and B, if the soft validity of
A is better than that of B, then the hard validity of
A tends to be higher than that of B. Fourth, the re-
sults of the bigram cases (‘B**’) are much better than

those of the unigram cases (‘U**’). One reason is that
the bigrams are quite superior to the unigrams in repre-
senting the content of a document. Fifth, in the cases of
bigram, the stopword removal process is helpful while
the stemming process does not help much. Sixth, in
the cases of unigram, non-stemming is preferable while
the stopword removal process is not useful. Finally, the
performances of ‘BXO’ and ‘BOO’ are comparable and
much higher than ‘BOX’ and ‘BXX’, while the perfor-
mance of ‘UXO’ is much higher than the other unigram
cases. However, on average, the ‘UXX’ seems to be the
second best case for the unigram. Since the soft valid-
ity is more flexible than the hard validity, a higher soft
validity is preferable. Although performance of ‘BOO’
seems to be slightly better than ‘BXO’ in the higher
ranks, ‘BXO’ performs better on average. In our task,
the performance ranks for bigram are ‘BXO’ > ‘BOO’
> ‘BOX’ > ‘BXX’ and the performance ranks for uni-
gram are ‘UXO’ > ‘UXX’ > ‘UOO’ > ‘UOX’.

In terms of minimum support and computational
time, we can conclude as follows. First, since a docset
discovered from the bigram cases tends to have a lower
support than the unigram cases, it is necessary to set
a small minimum support in order to obtain the same
number of docsets. Second, the cases with stopword
removal run faster than ones without stopword removal
since they consider fewer words. Moreover, they tend
to have a lower minimum support.

As a more detailed exploration of these four best
cases, the soft validity and the hard validity as well as
the number of discovered docsets for each docset length
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Fig. 4 Set validity based on the 1-, 2- and 3-OACMs when various top-N rankings of
discovered docsets are considered: soft validity (left) and hard validity (right).

Table 2 The set 1-validity for each docset length when the
top-100000 ranking is considered. Each cell indicates soft valid-
ity/hard validity as well as the number of docsets in the bracket.

Docset BXO BOO UXO UXX
length

2 10.86/10.86 11.21/11.21 1.83/1.83 1.31/1.31
(40,870) (38,553) (64,326) (55,262)

3 14.00/4.54 17.35/6.01 3.32/0.35 1.97/0.15
(30,679) (26,174) (33,489) (40,934)

4 20.73/2.05 19.20/1.98 5.09/0.00 1.07/0.00
(10,759) (18,593) (2,181) (3,798)

5 24.40/0.62 21.59/0.66 6.25/0.00 0.00/0.00
(8,004) (13,084) (4) (6)

6 27.07/0.17 24.61/0.09
(5,266) (3,519)

7 28.83/0.04 41.31/0.00
(2,835) (71)

8 30.60/0.00 45.24/0.00
(1,168) (6)

9 32.67/0.00
(347)

10 35.19/0.00
(66)

11 38.33/0.00
(6)

%Set
validity 19.51/3.67 18.40/4.11 2.71/1.02 1.66/0.57

are investigated. The result of the top-100000 ranking
is shown in Table 2. Due to the space limitation, the re-
sults of the other top-N rankings are omitted but they
perform in similar manners. From the table, some in-
teresting characteristics are observed: (1) the number
of bigger docsets is smaller, (2) compared to the uni-
gram, the bigram produces bigger docsets, (3) in most
cases, the soft validity of bigger docsets is higher than
that of smaller ones while the hard validity of bigger
docsets is lower than that of smaller ones. These obser-
vations reflect a good characteristic of the evaluation
and match with our expectation.

Besides 1-OACM, the discovered docsets can be
evaluated with the criteria of 2-OACM and 3-OACM.

In this assessment, only four best representations, two
from the unigram cases (‘UXO’ and ‘UXX’) and two
from the bigram cases (‘BXO’ and ‘BOO’), are taken
into consideration. Figure 4 displays the soft valid-
ity (the left graph) and the hard validity (the right
graph) under 1-, 2-, and 3-OACMs. Since the mini-
mum support and mining time in each case is the same
as shown in Table 1, they are omitted from the fig-
ure. In the figure, we use the notation to represent the
evaluation of docsets under the specified OACM where
those docsets are discovered from a specific document
representation. For example, ‘3:BXO’ means the eval-
uation of docsets under 3-OACM where the docsets are
discovered by encoding document representation using
the BXO scheme (bigram, non-stemming and stopword
removal). Being consistent for both soft validity and
hard validity, the set 3-validity (one calculated under
the 3-OACM) of discovered docsets is higher than the
set 2-validity (one calculated under the 2-OACM), and
in the same way the set 2-validity is much higher than
the set 1-validity (one calculated under the 1-OACM).
Compared to the evaluation using only direct citation
(1-OACM), more relations in the discovered docsets are
valid when both direct and indirect citations (2- and 3-
OACMs) are taken into consideration.

Similar to 1-OACM, ‘BXO’ and ‘BOO’ are com-
parable and perform as the best cases for both soft va-
lidity and hard validity under the same OACM. More-
over, in the cases of bigram evaluated under the 1- and
2-OACMs, the set validity drops remarkably when top-
N rankings with a larger N are focused. The qual-
ity of docsets in the higher rank (smaller N) outper-
forms that of the lower rank. This outcome implies
that our evaluation based on direct/indirect citations
seems to be a reasonable method for assessing docsets.
For all types of document representation, the bigram
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Table 3 The actual set validity, the expected set validity and their ratio, for various
top-N rankings (soft validity).

Document N 1-OACM 2-OACM 3-OACM
representation actual expected ratio actual expected ratio actual expected ratio

1000 45.47 0.07 676.13 92.56 1.43 64.85 98.47 9.88 9.97
5000 29.31 0.07 401.43 79.96 1.55 51.64 96.52 10.67 9.04

BXO 10000 24.49 0.07 327.52 74.62 1.59 47.07 95.22 10.89 8.74
50000 19.29 0.11 180.36 73.40 2.25 32.60 95.77 14.88 6.44

100000 19.51 0.13 145.03 72.08 2.78 25.96 94.87 16.98 5.59
1000 3.88 0.06 60.10 25.27 1.37 18.44 52.54 9.49 5.54
5000 3.77 0.07 56.01 22.32 1.43 15.62 52.98 9.89 5.36

UXO 10000 3.47 0.07 49.92 21.53 1.47 14.61 52.30 10.19 5.13
50000 2.78 0.08 35.83 20.54 1.65 12.46 53.56 11.38 4.71

100000 2.71 0.08 32.67 21.03 1.76 11.96 55.11 12.11 4.55

Table 4 The actual set validity, the expected set validity and their ratio, for various
top-N rankings (hard validity).

Document N 1-OACM 2-OACM 3-OACM
representation actual expected ratio actual expected ratio actual expected ratio

1000 43.95 0.06 754.31 92.28 1.24 74.33 98.47 8.79 11.20
5000 24.88 0.05 502.81 77.68 1.06 73.26 96.44 7.75 12.44

BXO 10000 19.33 0.05 402.36 71.30 1.03 69.26 95.10 7.54 12.61
50000 6.36 0.02 381.96 57.10 0.37 154.06 94.70 3.35 28.30

100000 3.67 0.01 309.01 47.84 0.27 179.06 93.28 2.49 37.45
1000 3.78 0.06 59.44 25.07 1.35 18.56 52.24 9.37 5.57
5000 3.35 0.06 57.67 20.76 1.24 16.76 51.13 8.78 5.83

UXO 10000 2.63 0.05 48.77 18.87 1.15 16.37 49.31 8.32 5.93
50000 1.44 0.04 37.33 13.97 0.84 16.69 46.00 6.62 6.95

100000 1.02 0.03 34.05 12.12 0.66 18.28 44.80 5.64 7.95

cases perform better than the unigram cases when they
are evaluated under the same v-OACM. Especially the
cases under 3-OACM, both two bigram cases (‘3:BXO’
and ‘3:BOO’) are almost 100% valid while two unigram
cases (‘3:UXO’ and ‘3:UXX’) are approximately 50%
valid. This phenomenon shows the advantage of bigram
in being a good document representation for document
relation discovery and those documents in each doc-
set cite to each other under the specific range within
citation graph. Furthermore, the performance gap be-
tween bigram and unigram becomes smaller when top-
N rankings with a larger N are considered. For a top-N
ranking with a larger N , the bigram cases tend to have
bigger docsets than the unigram cases and then obtain
lower validity since naturally a bigger docset is likely
to have lower validity.

In the next experiment, the evaluation is made
to investigate the relative quality of discovered docsets
against the expected validity. As stated in Section 3.3,
to compare the evaluation based on different v-OACMs,
the expected validity can be calculated for each individ-
ual v-OACM. To do this, the expected set validity is
calculated with respect to Equation 7. Using Equation
6, the base probabilities under 1-, 2-, and 3-OACMs (p1,
p2 and p3) for our collection are 6.26×10−4, 1.36×10−2

and 9.41 × 10−2, respectively. Due to the space limi-
tation, only the investigation of ‘BXO’ and ‘UXO’ are
shown here, but the other cases are similar to these two
cases. The actual set validity gained from the experi-
ments, the expected set validity calculated from Equa-
tion 7 and their ratio are displayed in Table 3 and Ta-
ble 4, for soft validity and hard validity, respectively.
The ratio expresses the quality of the discovered doc-

sets compared to its expected validity.
From the tables, the quality of discovered docsets

are significantly high, compared to the expected valid-
ity. In principle, the expected validity of a lower-OACM
is always lower than or equal to that of a higher-OACM.
For our collection, the expected validity of 2-OACM is
approximately 20-22 times higher than that of 1-OACM
while the expected validity of 3-OACM is about 7-9
times higher than that of 2-OACM. Incidentally this
figure is obtained for both soft validity and hard valid-
ity. Although it seems that we gain a low set validity
for a lower-OACM, but if we compare that validity to
its expected validity, we will find out that the ratio is
considerably large. That is, the discovered docsets are
eligible. For instance, focusing on the top-1000 rank-
ing, although we gained approximately 4% for both soft
validity and hard validity under the 1-OACM with the
unigram (‘UXO’), it corresponds to 60 times over the
expected validity. Under the same condition, for the
2- and 3-OACM, we obtained approximately 19 and 6
times over the expected validity, respectively. In the
case of bigram (‘BXO’) and under the 1-, 2- and 3-
OACMs, the ratios are approximately 676, 65 and 10
respectively for soft validity, while they raise to approx-
imately 754, 74 and 11, respectively, for hard validity.

By comparing the result to the expected validity,
the evaluations under different v-OACMs become com-
parable with impartial intention. Although the set va-
lidity of discovered docsets under a lower-OACM is low,
it may be relatively high compared to the expected va-
lidity. In Table 3 and 4, although the order of the set va-
lidities for different OACMs is 3-OACM > 2-OACM >
1-OACM for given discovered docsets, the order of their
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Table 5 Relatedness scores given by experts (BXO vs. UXO).

% Average Relatedness
N #Samples BXO UXO

1000 10 77.08 21.25
5000 50 48.25 16.00

10000 100 34.46 12.17

ratios is 1-OACM > 2-OACM > 3-OACM. This result
indicates that although the proposed method gains a
low value of the set validity for 1-OACM, the result
value is quite good compared to the expected value.

In the last experiment, we evaluate the quality of
discovered docsets with the answers from human eval-
uators. Since it is a time consuming task to judge
the quality of discovered docsets by hand, some dis-
covered docsets from each top-N ranked docsets are
systematically selected as representative samples. One
docset from each chunk of one hundred ranked doc-
sets is selected. Then, we get 10, 50 and 100 docsets
as the samples for top-1000, top-5000 and top-10000
ranked docsets, respectively. With the limitation of a
labor-intensive task, we investigate the docsets discov-
ered from two cases that we focus in the work, i.e.,
‘BXO’ and ‘UXO’. Therefore, 320 docsets in total are
selected for human judgment. To indicate the related-
ness of each docset, four experts holding Ph.D. degrees
in computer science or engineering were asked to as-
sign scores for those selected relations in random order
and without repetitions. The experts carefully read
the documents in a docset one by one and assigned a
score for their relatedness. The degree of relatedness
is classified into three ordinal scales; 0% for ‘not re-
lated’, 50% for ‘somewhat related’, and 100% for ‘re-
lated’. The percentage of average relatedness given by
humans are shown in Table 5. This result is consensus
with the result from the proposed automatic evaluation
method. There are two interesting observations in this
table. First, the results from bigram case (‘BXO’) is
better than those from unigram case (‘UXO’) for any
top-N rankings. Second, the results show that better
docsets can be discovered in the higher ranks rather
than the lower ranks. Although only the average relat-
edness scores are shown here, the individual evaluation
result obtained from each expert also preserves the per-
formance order, i.e. ‘BXO’ has higher relatedness score
than ‘UXO’ and the higher rank has higher related-
ness score than the lower rank. These results support
that the proposed evaluation method has high poten-
tial to use as an alternative method for evaluating the
discovered docsets in order to avoid labor-intensive and
time-consuming tasks in human evaluation.

5. Conclusions

This work proposes a method to use citation informa-
tion in research publications as a source for evaluating
the discovered document relations. Three main contri-

butions of this work are as follows. First, soft validity
and hard validity are developed to express the qual-
ity of document relations, where the former focuses on
the probability that any two documents in a docset
has a valid relation while the latter concentrates on the
probability that at least one document in a docset has
valid relations with all of the other documents in that
docset. Second, a method to use direct and indirect
citations as comparison criteria is proposed to assess
the quality of docsets. Third, the expected validity is
introduced, using probability theory, to relatively eval-
uate the quality of discovered docset. By comparing
the result to the expected validity, the evaluation be-
comes impartial, even under different comparison cri-
teria. The manual evaluation was also done for per-
formance comparison. Using more than 10,000 docu-
ments obtained from a research publication database
and frequent itemset mining as a process to discover
document relations, the proposed method was shown
to be a powerful way to evaluate the relations in four
aspects: soft/hard scoring, direct/indirect citation, rel-
ative quality over the expected validity, and compari-
son to human judgment. As a future work, we plan to
explore more on association rules, instead of frequent
itemsets. By this, we need to consider the direction of
relations between documents. Furthermore, a hybrid
approach which utilizes both terms in document and
citations among documents for discovering document
relations is also valuable for further investigation.
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