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Abstract. We address the problem of cool blog classification using only
positive and unlabeled examples. We propose an algorithm, called PUB,
that exploits the information of unlabeled data together with the posi-
tive examples to predict whether the unseen blogs are cool or not. The
algorithm uses the weighting technique to assign a weight to each unla-
beled example which is assumed to be negative in the training set, and
the bagging technique to obtain several weak classifiers, each of which
is learned on a small training set generated by randomly sampling some
positive examples and some unlabeled examples, which are assumed to
be negative. Each of the weak classifiers must achieve admissible perfor-
mance measure evaluated based on the whole labeled positive examples
or has the best performance measure within iteration limit. The majority
voting function on all weak classifiers is employed to predict the class of
a test instance. The experimental results show that PUB can correctly
predict the classes of unseen blogs where this situation cannot be handled
by the traditional learning from positive and negative examples. The re-
sults also show that PUB outperforms other algorithms for learning from
positive and unlabeled examples in the task of cool blog classification.

Keywords: Cool blog, PU-learning, weighting examples, bagging.

1 Introduction

For text mining, blog is an interesting textual resource because of its unique
characteristic and public availability. It is a recent form of online content that has
become popular among the web users. The contents of each blog are frequently
updated by the postings of blog entries in reverse chronological order. Nowadays,
a large number of blogs are published over the blogosphere but only some of them
are interesting from the viewpoint of the readers.

The problem to identify a set of blogs that can interest an individual reader
from a huge amount of blogs is not trivial. In this work, we consider the interest-
ingness of blogs in an aspect of their contents but not their design or appearance,
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named coolness. Finding the cool blogs with interesting contents can be useful,
but a more challenging task is how to overcome the real-life scenario when the
labeled data is rare and only positive examples are preferred.

The criteria to judge the coolness of blogs are fairly subjective based on the
readers’ intuition. For example, the readers whose interests are gourmet may
prefer those blogs that recommend good restaurants more than ones that relate
to the modern fashions. Some of the readers may have interest in both kinds
of blogs. We can simply represent the cool blog classification as a basic binary
classification where we suppose that the reader is interested in one specific group
of blogs and seeks to distinguish between the interesting instances (i.e., positive
examples) and the other instances (i.e., negative examples). In the real world
case, positive examples can be collected from the blogs that have been visited
many times by the user, but this is not applicable for the negative examples.
Therefore, it often happens that we lack the labeled negative examples although
there are a large number of unlabeled examples which we can employ to learn
the classifier. This scenario is called the learning from positive and unlabeled
examples (PU-learning). Moreover, the labeled positive examples may not cover
all target concepts that the reader is interested in. This effects the difficulty of
predicting unseen instances if only a small set of labeled examples is available.
Especially to the labeled cool blogs, it is highly possible that we have less num-
ber of positive examples. Those labeled examples are only a portion of positive
concepts that can interest the reader. There are other target and non-target
concepts available in the unlabeled examples which can be used to learn the
classification model.

To overcome these problems, we propose a new algorithm for PU-learning
that employs two techniques for learning. First, the weighting technique is used
for assigning a weight to each unlabeled example and all of unlabeled examples
are assumed to be negative in the training set. With the training set that con-
tains positive and assumed negative examples, the bagging technique is applied
to obtain a smaller set of training used for learning the classifier by random sam-
pling with replacement from the training set. After several iterations, a number
of classifiers will be generated. Each of them must achieve admissible perfor-
mance measure evaluated based on the whole labeled positive examples or has
the best performance measure within iteration limit, but it does not overfit to
the training positive examples. This enables the generated classifiers to predict
the classes of unseen instances. By aggregating these classifiers, the variance
error from various training sets generated by the samplings can be lessen.

The contributions of this work are as follows. We are the first to address the
problem of cool blog classification in the scenario of PU-learning that is prevalent
in the real world application. We propose an algorithm for PU-learning which
needs only positive and unlabeled examples as the inputs without separated val-
idation sets. Although it is difficult to predict the class of unseen instances when
only a small number of labeled examples is available, the proposed algorithm
can perform well in such case by employing the bagging technique to randomly
sample the data for training.
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2 Related Work

We divide this section into two parts. The first part discusses the problem of cool
blog classification. The second part reviews existing approaches of PU-learning.

The problem of cool blog classification was first introduced in [1]. They in-
troduced some assumptions on the topics of blogs to indicate the coolness. A
set of features corresponding to their assumptions was proposed for encoding
both positive and negative examples and they are learned by traditional SVM.
However, their scenario is absolutely different from our work since we deal with a
more practical scenario where only positive and unlabeled examples are available
for learning. Another related research on blog data is the credibility assessment
of blogs [2,3]. They proposed a set of factors which can be used to indicate the
credibility of blogs. The objective of credibility assessment is totally different
from cool blog classification in that they want to retrieve a set of highly credible
blog entries with regard to the specified query while our objective is to identify
cool blogs as a whole without prerequisite information. Although there are some
studies on the interestingness of web contents [4,5] in the information retrieval
area, they are not equivalent to this problem because their targets are to find
interesting web pages based on the information of reader’s profile.

For the problem of PU-learning, several algorithms have been published after
the first work in [6]. As stated in [7], the algorithms for PU-learning can be
divided into three families. The first family of algorithms is a two-step strategy
where the heuristics to identify unlabeled examples that are likely to be nega-
tive are applied in the first step, and the standard learning method learns the
identified examples and positive examples in the second step [8,9,10,11].

The second family of algorithms focuses on estimating statistical queries over
positive and unlabeled examples in order to construct the model of negative
examples [12]. This idea was also extended to the Co-Training scenario for which
the data has two or more redundant views that are compatible but conditionally
independent [13]. The shortcoming of this family of algorithms is the prerequisite
knowledge of the prior probability of the positive examples which are usually not
available in practice.

The third family of algorithms concerns with assigning weights to the exam-
ples, assuming unlabeled examples as negative and applying standard learning
method. Lee and Liu [14] applied the logistic regression to learn the linear func-
tion from the weighted examples. The positive examples are assigned a specific
weight while the unlabeled examples, that are assumed to be negative, are as-
signed another weight. Those two weights are derived from a validation set by
optimizing the model to handle noise rates of greater than a half. Liu et al. [9]
presented the biased SVM that allows noise for both positive and negative ex-
amples in the SVM formulation by giving two different weights for positive and
negative errors, respectively, via regularization parameters. Zhang and Lee [15]
gives a specific weight to the positive examples in the classification function.
The classification function is a simple sign function of the difference between
the weighted probability of being positive and the probability of being unlabeled
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for a given example, where a weight is estimated from a validation set and the
probabilities are estimated based on tf-idf of the words in the training set.

The most recent successive approach was presented by Elkan and Noto in [16].
When the assumption that positive training examples are selected completely at
random holds, they proved that a classifier trained on the positive and unlabeled
examples predict probabilities that differ by only a constant factor from the true
conditional probabilities of being positive. This assumption is coincident with a
general situation when we prepare the data for cool blog classification. However,
there are two major shortcomings of their approach. First, the high bias of
the generated classifier that is trained from the whole positive and unlabeled
examples may result to the overfit on the training set. Second, their method to
duplicate the same unlabeled examples as both positive and negative will effect
badly to the SVM.

Most of the existing algorithms for PU-learning have been evaluated by the
modified versions of standard data sets, e.g., Reuters-21578 and 20Newsgroup.
These modified datasets are generated by regarding some arbitrarily-selected
examples as unlabeled. In contrast, our dataset for cool blog classification is
not artificial in the sense that the unlabeled examples are not generated from
the labeled ones. It may be the case that users would try to avoid annotating
examples which are hard to make the decision on. In this work, we address the
problem of PU-learning in this practical way using cool blog data and compare
our approach with some existing PU-learning algorithms for performance study.

3 PUB: An Algorithm for PU-Learning Using Weighting
and Bagging Techniques

In this work, we propose an algorithm that employs weighting and bagging
technique for PU-learning, called PUB. The algorithm can be divided into two
steps. In the first step, the weighting technique is used to assign individual
weight to each unlabeled example. We follow the approach in [16]. In the second
step, the bagging technique is applied to obtain several weak classifiers, each
of which is learned on a small training set generated by randomly sampling
some positive examples and some unlabeled examples, which are assumed to
be negative. Each of the weak classifiers must achieve admissible performance
measure evaluated based on the whole labeled positive examples or has the best
performance measure within iteration limit. The majority voting function on all
weak classifiers is employed to predict the class of a test instance.

3.1 Weighting Technique

Before giving an explanation about weighting technique, we first formally define
the problem of cool blog classification using positive and unlabeled examples.

Let D denote a training set, D = {(xn, yn, sn)} where n = 1, ..., N . The x’s
are examples in the training set and y’s are the class labels where yn = 0 if xn is
a negative example and yn = 1 if xn is a positive example. At the beginning, yn
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is left unknown if xn is an unlabeled example. The s’s are other binary attributes
of examples, where sn = 1 if xn is labeled and sn = 0 if xn is unlabeled. x, y and
s can be viewed as random variables where there is some unknown probability
distribution p(x, y, s) over triples < x, y, s >. In our case, only positive examples
are labeled. Therefore, no negative example is labeled, i.e., p(s = 1|x, y = 0) = 0.

Our goal is to learn a function f(x) so that f(x) becomes close to p(y = 1|x)
as much as possible, but we need an assumption about which positive examples
are labeled. By following the same assumption as in [16], the labeled positive
examples are chosen completely at random from all positive examples. Therefore,
this assumption can be formally stated as p(s = 1|x, y = 1) = p(s = 1|y = 1).

Suppose we want to learn a function g(x) to classify whether a given document
is labeled or not, such that g(x) = p(s = 1|x). In [16], it is stated that we can
obtain a goal function f(x) from g(x) by using the following lemma.

Lemma 1. Suppose the “selected completely at random” assumption holds, then
p(y = 1|x) = p(s = 1|x)/c where c = p(s = 1|y = 1).

In other words, c is the constant probability that a positive example is labeled.
In their work, c is estimated as 1

n

∑
x∈P g(x) where P is a set of labeled positive

examples and n is the cardinality of P . This means we can calculate c from the
probabilities of positive examples produced as output of the classifier g(x). The
proof can be found in [16].

In this scenario, it is obvious that p(y = 1|x, s = 1) = 1 for any labeled
positive example, and p(y = 1|x, s = 0) can be obtained from

p(y = 1|x, s = 0) =
(1 − c)

c

p(s = 1|x)
1 − p(s = 1|x)

. (1)

Here, p(y = 1|x, s = 0) is the probability that an unlabeled example is pos-
itive, and we denote w(x) = p(y = 1|x, s = 0). In other words, 1 − w(x) is
the probability that an unlabeled example is negative. The original approach
in [16] employs these probabilities by assigning different weights to examples
for constructing a new training set. Each positive example is assigned with unit
weight p(y = 1|x, s = 1), while the unlabeled example x is duplicated; one copy
is assumed to be positive with weight w(x) and the other copy is assumed to
be negative with weight 1 − w(x). This is the main shortcoming of the original
approach since the duplication of examples with different labels effects to the
failure of the generated classifier.

In this work, we propose to assign unit weight to the positive examples, and
assume all unlabeled examples to be negative with their weights being 1−w(x).
These weighted examples are later used as a training set for the second step.

3.2 Bagging Technique

The original idea of bagging for classification is to generate m weak classifiers
trained from different training sets that are sampled from the whole training set
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uniformly and with replacement [17]. Although it is possible to directly apply the
original idea for PU-learning, there are three differences between the scenario
of the original bagging technique and PU-learning. First, all examples in the
training set must be labeled in the original scenario of bagging approach. Second,
the training set must have both positive and negative examples. Third, there is
no guarantee that each weak classifier trained from the sampled training set will
achieve high performance on the target concepts, especially for the case that
only positive examples are labeled.

We can simply solve the first and second problems by assuming all unlabeled
examples as either positive or negative. However, we still need to solve the third
problem simultaneously since our assumed classes of some unlabeled examples
may be incorrect and effect to the poor performance of the generated classifiers.
A modified version of bagging, BaggTaming [18], can be applied to solve the
third problem by setting a condition that each classifier should achieve admissible
performance measure when it is evaluated based on the target concepts. However,
such work has different scenario to our problem since the nature of data used in
their approach is different from PU-learning and we do not have labeled negative
examples. Moreover, the third problem still remains if the original algorithm
is applied because not all generated classifiers achieve admissible performance
measure. Therefore, we proposed a new bagging technique to solve those three
problems as shown by the pseudo code in Figure 1.

1: Construct D′ from D by assigning yn = 0 if xn is an unlabeled example
2: W = ∅;
3: while |W| < m do
4: i = 1
5: maxperf = 0
6: while i ≤ LIMIT do
7: Generate Di by random sampling with replacement from D′ and balancing

the number of examples in each class
8: Learn fi(x) = p(y = 1|x) from x ∈ Di

9: if evalx′∈P (fi(x′)) > maxperf then
10: fBEST ← fi(x)
11: maxperf = evalx′∈P (fi(x′))
12: end if
13: if evalx′∈P (fi(x′)) > α then
14: goto line 18
15: end if
16: i ← i + 1
17: end while
18: W = W ∪ fBEST

19: end while
20: f̂(x) = arg max

y∈{−1,1}

�

fj(x)∈W

evalx′∈P (fj(x′)) × I(y == fj(x))

Fig. 1. Pseudo code of Bagging Technique in PUB
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With the given training set D that contains positive and unlabeled examples,
D′ is constructed from D, where the positive examples are unchanged but the
unlabeled examples are assumed to be negative. The algorithm has two repetition
loops, where the outer loop (line 3) concerns with the construction of a set of
weak classifiers W , while the inner loop (line 6) generates the candidate classifiers
fi(x). Any candidate classifier that has the best performance (maxperf) in the
inner loop (line 9-12) or achieves admissible performance measure α (line 13-
15) is included to a set of weak classifiers W (line 18). In line 7, to generate a
candidate classifier, we construct a new training set from D′ by random sampling
with replacement and balancing the number of examples in both classes. This is
one difference of our algorithm to the original bagging approach. We propose to
balance the number of examples since the number of negative examples (assumed
from the unlabeled examples in line 1) is usually much larger than that of positive
examples. This simple proposed solution can prevent skewed decision boundaries
problem occurred in an unbalanced classification [19]. Furthermore, the approach
of generating a new training set by random sampling with replacement can help
solve the problem that the number of positive examples is small. This issue was
rarely addressed by other PU-learning algorithms.

A function evalx∈P (fi(x)) (line 9) is the performance measure function of the
classifier fi(x) evaluated based on x ∈ P . Since the scenario of PU-learning has
only positive examples as target concept, we cannot use F-measure, which is
commonly used in the classification. We turn to a similar performance measure
proposed in [14], which can be calculated only from the positive examples. Given
precision = p(y = 1|f(x) = 1) and recall = p(f(x) = 1|y = 1), the performance
measure is calculated as

precision × recall

p(y = 1)
=

recall2

p(f(x) = 1)
. (2)

This measure behaves similarly to the F-measure in that it is large only when
both precision and recall are large. Therefore, we use only recall and p(f(x) = 1),
which can be calculated from only positive examples as a performance measure.

The algorithm iteratively runs until we get m weak classifiers as conditioned
in line 3. In the last step, majority voting function f̂(x) on all m weak classifiers
is used to predict the class of a test instance, but each vote is weighted by the
performance measure of each weak classifier as shown in line 20. The identity
function I[cond] produces 1 if the cond is true, otherwise 0. Note that a classifier
fi(x) in this case will output 1 or -1.

Our algorithm employs the weighting technique in the first step to construct
the training examples with their corresponding weights and applies the bagging
technique to learn the classification function.

4 Experiments

To study the performance of the proposed algorithm, we conduct several ex-
periments on the real data for cool blog classification in various settings. We
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also compare the performance of our algorithm with some other best performing
algorithms for PU-learning.

4.1 Benchmark Corpus

We use the same corpus as presented in [1] for a task of cool blog classification.
The data was provided by the blogWatcher Inc., a Japanese blog search company,
for the purpose of research. There are 838,341 blog entries on distinct 60,736
blogs. Their issued dates are varied from Feb 2005 to Dec 2007. Manual labeling
of cool blogs was done by an engineer in that company, who is a native Japanese
speaker, without any given assumptions. The annotator selected the blogs for
labeling in random, and judged the coolness of the whole blog instead of each
individual blog entry. Finally, the corpus contains 270 positive blogs (with 9,827
blog entries), 270 negative blogs (with 3,836 blog entries) and the rest are left as
unlabeled examples. We did not interview the annotator of his notion to label
the cool blogs. This can help avoid the bias of our method to identify cool blogs.
We encode each blog consisting of multiple blog entries as a simple bag-of-words
vector.

Although our data is a collection of Japanese blogs, we did not use any
language-specific techniques in the task of classification. In other words, the con-
tribution of this work can be applied for identifying cool blogs in any languages
if the concept of cool blog is similar to this work. Since the main objective of this
work is to solve the problem of cool blog classification rather than the problem
of PU-learning, the performance study of PUB against other PU-learning algo-
rithms on standard corpus (e.g., Reuters-21578, 20Newsgroup) is out of scope.

4.2 Implementations and Parameter Settings

Our proposed algorithm is flexible for any classification method. In this work, we
use SVM where we selected one implementation presented by M.W. Chang and
H.T. Lin1 that allows different weights (via regularization parameter C) for dif-
ferent examples. However, SVM is not a learning method that directly produces
the correct probabilities. The output of SVM can be post-processed into cali-
brated probabilities by applying Platt scaling [20]. We apply Platt scaling only
in the first step of an algorithm for weighting the examples. Through all experi-
ments, the linear kernel function, which is commonly used for text classification,
was employed with the optimized C.

Four parameters are needed to be defined in PUB algorithm, i.e., the num-
ber of weak classifiers (m), the admissible performance measure (α) of a weak
classifier, the iteration limit of generating candidate classifiers (LIMIT) and the
size of sampled training set (|Di|). With the larger m, it tends to be that the
more reliable result from the majority voting function will be obtained. How-
ever, the larger m also causes an algorithm to take more computational time. We
can simply set m to be a specific number that has acceptable trade-off between
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#15
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performance and computational time. In this work, we set the default m to be
30. For the α, we propose to get this threshold by learning a classifier from the
whole positive examples and assuming all unlabeled examples to be negative. In
our experiment, we found out that this value is close to the optimized value. For
our case, the default α is 0.6. The parameter LIMIT performs in the same way
as parameter m. If we set smaller LIMIT, most of the weak classifiers may not
achieve α performance. In the preliminary experiment, we found that the num-
ber of iterations in the inner loop is less than ten if we set the value of α not too
high. We set the default value of LIMIT to be 100. Since it is not straightforward
to find the optimized value of |Di|, we then investigate it by the experiment. By
default, we set |Di| to be 50% of the number of positive examples.

4.3 Experimental Results

All experiments were conducted in three-fold cross validation on the labeled
examples where two folds of positive examples and the whole unlabeled examples
are used for training. The remaining positive examples with one fold of negative
examples are used for testing. Note that the other two folds of negative examples
are used for training only in the case of PN-learning (described below). We show
the performance by averaging the results from those three validations.

Comparison with PN-learning: We conducted this experiment to compare
the performance of PUB with the learning from positive and negative examples
(PN-learning). The results are shown in Table 1. We used the default setting
as shown in Section 4.2 for PUB. There are two alternative ways to exploit
PN-learning. The first way is to provide actual negative examples for learning
denoted by “PN-learning1”. This is possible for this corpus since the annota-
tor also labeled the negative examples but it is not practical in real world ap-
plication. The second way is to assume all unlabeled examples to be negative
denoted by“PN-learning2”. The performance of PUB is surprisingly better than
both cases of PN-learning. This is possible since the given negative examples
for PN-learning may not be the good representatives for negative class, and this
circumstance is also the same for the case of positive examples. Therefore, only
one discriminative model may not be able to predict the classes of all instances
that have the target concepts. We can say that PUB is a less-biased model in the
sense that it combines several outputs from the discriminative models that are
guaranteed to achieve admissible performance measure on the target concepts.

Table 1. Performance of PUB and PN-learnings

Method Accuracy Precision Recall F-measure
PN-learning1 0.787 0.819 0.741 0.778
PN-learning2 0.748 0.935 0.533 0.679
PUB 0.828 0.842 0.807 0.824
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Table 2. Performance of PUB and existing PU-learning algorithms

Method Accuracy Precision Recall F-measure
PEBL 0.723 0.696 0.795 0.742
Biased SVM 0.748 0.935 0.533 0.679
W-LR 0.758 0.832 0.659 0.735
WUE 0.737 0.887 0.552 0.680
PUB 0.828 0.842 0.807 0.824

Table 3. Variation of Parameters for PUB

Parameter Value Accuracy Precision Recall F-measure
m 5 0.813 0.850 0.759 0.802

10 0.813 0.833 0.781 0.807
30 0.828 0.842 0.807 0.824
50 0.830 0.850 0.800 0.824

α 0.5 0.822 0.863 0.767 0.812
0.6 0.828 0.842 0.807 0.824
0.7 0.802 0.793 0.819 0.806
0.8 0.776 0.762 0.837 0.798

|Di| 45 0.815 0.813 0.819 0.816
90 0.828 0.842 0.807 0.824
180 0.798 0.862 0.711 0.779
360 0.794 0.867 0.696 0.772

size of positive 20 0.769 0.727 0.859 0.788
examples for 45 0.811 0.810 0.815 0.812
training 90 0.817 0.830 0.796 0.813

180 0.828 0.842 0.807 0.824

Comparison with existing PU-learning algorithms. We selected four best
performing algorithms (mentioned in their papers) from the families of algo-
rithms for PU-learning to study the relative performance of PUB against the
existing algorithms. PEBL [11], Biased SVM [9], Weighted Logistic Regression
(W-LR, for short) [14] and weighting unlabeled examples (WUE, for short) [16]
are selected to investigate on this corpus. Since there is no source code available
for such algorithms except W-LR2, we carefully implement them following their
papers. The optimized value of parameters in each algorithm is manually tuned
and the best result of each algorithm is shown in Table 2. The results show that
PUB is superior to the other PU-learning algorithms, and those previous PU-
learning algorithms cannot achieve higher performance than the PN-learning.

Variations of PUB. We also varied the setting of parameters to show the best
optimized values of our algorithm. The results are shown in Table 3. Here, we can
achieve higher performance when we increase the value of m. However, with higher
m, more computational time is taken while the performance becomes saturated
2 http://www.comp.nus.edu.sg/∼leews/publications/logistic.tar.gz
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Table 4. Variation of method in PUB algorithm

Method Accuracy Precision Recall F-measure
original PUB 0.828 0.842 0.807 0.824
PUB without weighting technique 0.822 0.840 0.796 0.817

because of the identity function used for aggregating the classifiers. The optimized
value of parameter α in this case is 0.6 since it provides the classifiers that can
predict the target concept but not overfit to the training positive examples. How-
ever, this optimized value is close to the performance measure of the model that is
trained from all positive examples and unlabeled examples assumed as negative,
i.e., 0.53. Therefore, we can tune this parameter in this way. For Di, our default
setting for 50% of training positive examples performs the best. We also study
the situation that a training set has an extremely small number of labeled exam-
ples. Although the performance of PUB algorithm becomes lower when the smaller
number of positive examples is available, that performance is still better than the
PN-learning approaches and other PU-learning algorithms.

We conducted the last experiment to study the significance of two techniques
used in PUB algorithm by removing the weighting technique applied in the first
step. The results in Table 4 show that the performance of this modified PUB
becomes slightly lower than the original PUB. It means the proposed bagging
technique plays an important role to improve the performance of PU-learning
more than the weighting technique.

5 Conclusions and Future Work

This work addressed the problem of cool blog classification in the scenario of
PU-learning which is prevalent to the real world application. We proposed an
algorithm for PU-learning using weighting and bagging techniques. By inves-
tigation in several experimental settings, the proposed algorithm surprisingly
showed that it can predict unseen cool blogs. This situation cannot be handled
by the traditional PN-learning. The results show that the proposed algorithm
is superior to other existing algorithms for PU-learning in the task of cool blog
classification, and it can also deal with the case that has an extremely small
number of labeled examples. For future work, we plan to extend our algorithm
on other real world applications such as learning to annotate the NLP corpus
using only a small set of labeled examples.
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