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Abstract

We propose a method for extracting se-
mantic orientations of words: desirable
or undesirable. Regarding semantic ori-
entations as spins of electrons, we use
the mean field approximation to compute
the approximate probability function of
the system instead of the intractable ac-
tual probability function. We also pro-
pose a criterion for parameter selection on
the basis of magnetization. Given only
a small number of seed words, the pro-
posed method extracts semantic orienta-
tions with high accuracy in the exper-
iments on English lexicon. The result
is comparable to the best value ever re-
ported.

1 Introduction

Identification of emotions (including opinions and
attitudes) in text is an important task which has a va-
riety of possible applications. For example, we can
efficiently collect opinions on a new product from
the internet, if opinions in bulletin boards are auto-
matically identified. We will also be able to grasp
people’s attitudes in questionnaire, without actually
reading all the responds.

An important resource in realizing such identifi-
cation tasks is a list of words with semantic orienta-
tion: positive or negative (desirable or undesirable).
Frequent appearance of positive words in a docu-
ment implies that the writer of the document would

have a positive attitude on the topic. The goal of this
paper is to propose a method for automatically cre-
ating such a word list from glosses (i.e., definition
or explanation sentences ) in a dictionary, as well as
from a thesaurus and a corpus. For this purpose, we
usespin model, which is a model for a set of elec-
trons with spins. Just as each electron has a direc-
tion of spin (up or down), each word has a semantic
orientation (positive or negative). We therefore re-
gard words as a set of electrons and apply the mean
field approximation to compute the average orienta-
tion of each word. We also propose a criterion for
parameter selection on the basis of magnetization, a
notion in statistical physics. Magnetization indicates
the global tendency of polarization.

We empirically show that the proposed method
works well even with a small number of seed words.

2 Related Work

Turney and Littman (2003) proposed two algorithms
for extraction of semantic orientations of words. To
calculate the association strength of a word with pos-
itive (negative) seed words, they used the number
of hits returned by a search engine, with a query
consisting of the word and one of seed words (e.g.,
“word NEAR good”, “word NEAR bad”). They re-
garded the difference of two association strengths as
a measure of semantic orientation. They also pro-
posed to use Latent Semantic Analysis to compute
the association strength with seed words. An em-
pirical evaluation was conducted on 3596 words ex-
tracted from General Inquirer (Stone et al., 1966).

Hatzivassiloglou and McKeown (1997) focused
on conjunctive expressions such as “simple and
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well-received” and “simplistic but well-received”,
where the former pair of words tend to have the same
semantic orientation, and the latter tend to have the
opposite orientation. They first classify each con-
junctive expression into the same-orientation class
or the different-orientation class. They then use the
classified expressions to cluster words into the pos-
itive class and the negative class. The experiments
were conducted with the dataset that they created on
their own. Evaluation was limited to adjectives.

Kobayashi et al. (2001) proposed a method for ex-
tracting semantic orientations of words with boot-
strapping. The semantic orientation of a word is
determined on the basis of its gloss, if any of their
52 hand-crafted rules is applicable to the sentence.
Rules are applied iteratively in the bootstrapping
framework. Although Kobayashi et al.’s work pro-
vided an accurate investigation on this task and in-
spired our work, it has drawbacks: low recall and
language dependency. They reported that the seman-
tic orientations of only 113 words are extracted with
precision 84.1% (the low recall is due partly to their
large set of seed words (1187 words)). The hand-
crafted rules are only for Japanese.

Kamps et al. (2004) constructed a network by
connecting each pair of synonymous words provided
by WordNet (Fellbaum, 1998), and then used the
shortest paths to two seed words “good” and “bad”
to obtain the semantic orientation of a word. Limi-
tations of their method are that a synonymy dictio-
nary is required, that antonym relations cannot be
incorporated into the model. Their evaluation is re-
stricted to adjectives. The method proposed by Hu
and Liu (2004) is quite similar to the shortest-path
method. Hu and Liu’s method iteratively determines
the semantic orientations of the words neighboring
any of the seed words and enlarges the seed word
set in a bootstrapping manner.

Subjective words are often semantically oriented.
Wiebe (2000) used a learning method to collect sub-
jective adjectives from corpora. Riloff et al. (2003)
focused on the collection of subjective nouns.

We later compare our method with Turney and
Littman’s method and Kamps et al.’s method.

The other pieces of research work mentioned
above are related to ours, but their objectives are dif-
ferent from ours.

3 Spin Model and Mean Field
Approximation

We give a brief introduction to the spin model
and the mean field approximation, which are well-
studied subjects both in the statistical mechanics
and the machine learning communities (Geman and
Geman, 1984; Inoue and Carlucci, 2001; Mackay,
2003).

A spin system is an array ofN electrons, each of
which has a spin with one of two values “+1 (up)” or
“−1 (down)”. Two electrons next to each other en-
ergetically tend to have the same spin. This model
is called the Ising spin model, or simply the spin
model(Chandler, 1987). The energy function of a
spin system can be represented as

E(x,W ) = −1
2

∑

ij

wijxixj , (1)

wherexi andxj (∈ x) are spins of electronsi andj,
matrixW = {wij} represents weights between two
electrons.

In a spin system, the variable vectorx follows the
Boltzmann distribution :

P (x|W ) =
exp(−βE(x,W ))

Z(W )
, (2)

whereZ(W ) =
∑

x exp(−βE(x,W )) is the nor-
malization factor, which is calledthe partition
function and β is a constant calledthe inverse-
temperature. As this distribution function suggests,
a configuration with a higher energy value has a
smaller probability.

Although we have a distribution function, com-
puting various probability values is computationally
difficult. The bottleneck is the evaluation ofZ(W ),
since there are2N configurations of spins in this sys-
tem.

We therefore approximateP (x|W ) with a simple
functionQ(x; θ). The set of parametersθ for Q, is
determined such thatQ(x; θ) becomes as similar to
P (x|W ) as possible. As a measure for the distance
betweenP andQ, the variational free energyF is
often used, which is defined as the difference be-
tween the mean energy with respect toQ and the
entropy ofQ :

F (θ) = β
∑

x
Q(x; θ)E(x;W )
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−
(
−

∑

x
Q(x; θ) logQ(x; θ)

)
. (3)

The parametersθ that minimizes the variational free
energy will be chosen. It has been shown that mini-
mizingF is equivalent to minimizing the Kullback-
Leibler divergence betweenP and Q (Mackay,
2003).

We next assume that the functionQ(x; θ) has the
factorial form :

Q(x; θ) =
∏

i

Q(xi; θi). (4)

Simple substitution and transformation leads us to
the following variational free energy :

F (θ) = −β
2

∑

ij

wij x̄ix̄j

−
∑

i

(
−

∑
xi

Q(xi; θi) logQ(xi; θi)
)
.

(5)

With the usual method of Lagrange multipliers,
we obtain themean field equation:

x̄i =

∑
xi xi exp

(
βxi

∑
j wij x̄j

)

∑
xi exp

(
βxi

∑
j wij x̄j

) . (6)

This equation is solved by the iterative update rule :

x̄newi =

∑
xi xi exp

(
βxi

∑
j wij x̄

old
j

)

∑
xi exp

(
βxi

∑
j wij x̄

old
j

) . (7)

4 Extraction of Semantic Orientation of
Words with Spin Model

We use the spin model to extract semantic orienta-
tions of words.

Each spin has a direction taking one of two values:
up or down. Two neighboring spins tend to have the
same direction from a energetic reason. Regarding
each word as an electron and its semantic orientation
as the spin of the electron, we construct a lexical net-
work by connecting two words if, for example, one
word appears in the gloss of the other word. Intu-
ition behind this is that if a word is semantically ori-
ented in one direction, then the words in its gloss
tend to be oriented in the same direction.

Using the mean-field method developed in statis-
tical mechanics, we determine the semantic orienta-
tions on the network in a global manner. The global
optimization enables the incorporation of possibly
noisy resources such as glosses and corpora, while
existing simple methods such as the shortest-path
method and the bootstrapping method cannot work
in the presence of such noisy evidences. Those
methods depend on less-noisy data such as a the-
saurus.

4.1 Construction of Lexical Networks

We construct a lexical network by linking two words
if one word appears in the gloss of the other word.
Each link belongs to one of two groups: the same-
orientation linksSL and the different-orientation
links DL. If at least one word precedes a nega-
tion word (e.g., not) in the gloss of the other word,
the link is a different-orientation link. Otherwise the
links is a same-orientation link.

We next set weightsW = (wij) to links :

wij =





1√
d(i)d(j)

(lij ∈ SL)

− 1√
d(i)d(j)

(lij ∈ DL)

0 otherwise

, (8)

wherelij denotes the link between wordi and word
j, and d(i) denotes the degree of wordi, which
means the number of words linked with wordi. Two
words without connections are regarded as being
connected by a link of weight 0. We call this net-
work the gloss network (G).

We construct another network,the gloss-
thesaurus network (GT), by linking synonyms,
antonyms and hypernyms, in addition to the the
above linked words. Only antonym links are in DL.

We enhance the gloss-thesaurus network with
cooccurrence information extracted from corpus. As
mentioned in Section 2, Hatzivassiloglou and McK-
eown (1997) used conjunctive expressions in corpus.
Following their method, we connect two adjectives
if the adjectives appear in a conjunctive form in the
corpus. If the adjectives are connected by “and”, the
link belongs to SL. If they are connected by “but”,
the link belongs to DL. We call this networkthe
gloss-thesaurus-corpus network (GTC).
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4.2 Extraction of Orientations

We suppose that a small number of seed words are
given. In other words, we know beforehand the se-
mantic orientations of those given words. We incor-
porate this small labeled dataset by modifying the
previous update rule.

Instead ofβE(x,W ) in Equation (2), we use the
following functionH(β, x,W ) :

H(β, x,W ) = −β
2

∑

ij

wijxixj + α
∑

i∈L
(xi − ai)2,

(9)
whereL is the set of seed words,ai is the orientation
of seed wordi, andα is a positive constant. This
expression means that ifxi (i ∈ L) is different from
ai, the state is penalized.

Using functionH, we obtain the new update rule
for xi (i ∈ L) :

x̄newi =

∑
xi xi exp

(
βxis

old
i − α(xi − ai)2

)

∑
xi exp

(
βxisoldi − α(xi − ai)2

) ,

(10)
wheresoldi =

∑
j wij x̄

old
j . x̄oldi and x̄newi are the

averages ofxi respectively before and after update.
What is discussed here was constructed with the ref-
erence to work by Inoue and Carlucci (2001), in
which they applied the spin glass model to image
restoration.

Initially, the averages of the seed words are set
according to their given orientations. The other av-
erages are set to 0.

When the difference in the value of the variational
free energy is smaller than a threshold before and
after update, we regard computation converged.

The words with high final average values are clas-
sified as positive words. The words with low final
average values are classified as negative words.

4.3 Hyper-parameter Prediction

The performance of the proposed method largely de-
pends on the value of hyper-parameterβ. In order to
make the method more practical, we propose criteria
for determining its value.

When a large labeled dataset is available, we can
obtain a reliablepseudo leave-one-out error rate:

1
|L|

∑

i∈L
[aix̄′i], (11)

where[t] is 1 if t is negative, otherwise 0, and̄x′i is
calculated with the right-hand-side of Equation (6),
where the penalty termα(x̄i−ai)2 in Equation (10)
is ignored. We chooseβ that minimizes this value.

However, when a large amount of labeled data is
unavailable, the value of pseudo leave-one-out error
rate is not reliable. In such cases, we usemagnetiza-
tionm for hyper-parameter prediction :

m =
1
N

∑

i

x̄i. (12)

At a high temperature, spins are randomly ori-
ented (paramagnetic phase, m ≈ 0). At a low
temperature, most of the spins have the same di-
rection (ferromagnetic phase, m 6= 0). It is
known that at some intermediate temperature, ferro-
magnetic phase suddenly changes to paramagnetic
phase. This phenomenon is calledphase transition.
Slightly before the phase transition, spins are locally
polarized; strongly connected spins have the same
polarity, but not in a global way.

Intuitively, the state of the lexical network is lo-
cally polarized. Therefore, we calculate values of
m with several different values ofβ and select the
value just before the phase transition.

4.4 Discussion on the Model

In our model, the semantic orientations of words
are determined according to the averages values of
the spins. Despite the heuristic flavor of this deci-
sion rule, it has a theoretical background related to
maximizer of posterior marginal (MPM) estimation,
or ‘finite-temperature decoding’ (Iba, 1999; Marro-
quin, 1985). In MPM, the average is the marginal
distribution overxi obtained from the distribution
over x. We should note that the finite-temperature
decoding is quite different from annealing type algo-
rithms or ‘zero-temperature decoding’, which cor-
respond to maximum a posteriori (MAP) estima-
tion and also often used in natural language process-
ing (Cowie et al., 1992).

Since the model estimation has been reduced
to simple update calculations, the proposed model
is similar to conventional spreading activation ap-
proaches, which have been applied, for example, to
word sense disambiguation (Veronis and Ide, 1990).
Actually, the proposed model can be regarded as a
spreading activation model with a specific update
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rule, as long as we are dealing with 2-class model
(2-Ising model).

However, there are some advantages in our mod-
elling. The largest advantage is its theoretical back-
ground. We have an objective function and its ap-
proximation method. We thus have a measure of
goodness in model estimation and can use another
better approximation method, such as Bethe approx-
imation (Tanaka et al., 2003). The theory tells
us which update rule to use. We also have a no-
tion of magnetization, which can be used for hyper-
parameter estimation. We can use a plenty of knowl-
edge, methods and algorithms developed in the field
of statistical mechanics. We can also extend our
model to a multiclass model (Q-Ising model).

Another interesting point is the relation to maxi-
mum entropy model (Berger et al., 1996), which is
popular in the natural language processing commu-
nity. Our model can be obtained by maximizing the
entropy of the probability distributionQ(x) under
constraints regarding the energy function.

5 Experiments

We used glosses, synonyms, antonyms and hyper-
nyms of WordNet (Fellbaum, 1998) to construct an
English lexical network. For part-of-speech tag-
ging and lemmatization of glosses, we used Tree-
Tagger (Schmid, 1994). 35 stopwords (quite fre-
quent words such as “be” and “have”) are removed
from the lexical network. Negation words include
33 words. In addition to usual negation words such
as “not” and “never”, we include words and phrases
which mean negation in a general sense, such as
“free from” and “lack of”. The whole network con-
sists of approximately 88,000 words. We collected
804 conjunctive expressions from Wall Street Jour-
nal and Brown corpus as described in Section 4.2.

The labeled dataset used as a gold standard is
General Inquirer lexicon (Stone et al., 1966) as in the
work by Turney and Littman (2003). We extracted
the words tagged with “Positiv” or “Negativ”, and
reduced multiple-entry words to single entries. As a
result, we obtained 3596 words (1616 positive words
and 1980 negative words)1. In the computation of

1Although we preprocessed in the same way as Turney and
Littman, there is a slight difference between their dataset and
our dataset. However, we believe this difference is insignificant.

Table 1: Classification accuracy (%) with various
networks and four different sets of seed words. In
the parentheses, the predicted value ofβ is written.
For cv, no value is written forβ, since 10 different
values are obtained.

seeds GTC GT G
cv 90.8 (—) 90.9 (—) 86.9 (—)
14 81.9 (1.0) 80.2 (1.0) 76.2 (1.0)
4 73.8 (0.9) 73.7 (1.0) 65.2 (0.9)
2 74.6 (1.0) 61.8 (1.0) 65.7 (1.0)

accuracy, seed words are eliminated from these 3596
words.

We conducted experiments with different values
of β from 0.1 to 2.0, with the interval 0.1, and pre-
dicted the best value as explained in Section 4.3. The
threshold of the magnetization for hyper-parameter
estimation is set to1.0 × 10−5. That is, the pre-
dicted optimal value ofβ is the largestβ whose
corresponding magnetization does not exceeds the
threshold value.

We performed 10-fold cross validation as well as
experiments with fixed seed words. The fixed seed
words are the ones used by Turney and Littman: 14
seed words{good, nice, excellent, positive, fortu-
nate, correct, superior, bad, nasty, poor, negative,
unfortunate, wrong, inferior}; 4 seed words{good,
superior, bad, inferior}; 2 seed words{good, bad}.

5.1 Classification Accuracy

Table 1 shows the accuracy values of semantic ori-
entation classification for four different sets of seed
words and various networks. In the table, cv corre-
sponds to the result of 10-fold cross validation, in
which case we use the pseudo leave-one-out error
for hyper-parameter estimation, while in other cases
we use magnetization.

In most cases, the synonyms and the cooccurrence
information from corpus improve accuracy. The
only exception is the case of 2 seed words, in which
G performs better than GT. One possible reason of
this inversion is that the computation is trapped in a
local optimum, since a small number of seed words
leave a relatively large degree of freedom in the so-
lution space, resulting in more local optimal points.

We compare our results with Turney and
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Table 2: Actual best classification accuracy (%)
with various networks and four different sets of seed
words. In the parenthesis, the actual best value ofβ
is written, except for cv.

seeds GTC GT G
cv 91.5 (—) 91.5 (—) 87.0 (—)
14 81.9 (1.0) 80.2 (1.0) 76.2 (1.0)
4 74.4 (0.6) 74.4 (0.6) 65.3 (0.8)
2 75.2 (0.8) 61.9 (0.8) 67.5 (0.5)

Littman’s results. With 14 seed words, they achieved
61.26% for a small corpus (approx.1× 107 words),
76.06% for a medium-sized corpus (approx.2×109

words), 82.84% for a large corpus (approx.1×1011

words).
Without a corpus nor a thesaurus (but with glosses

in a dictionary), we obtained accuracy that is compa-
rable to Turney and Littman’s with a medium-sized
corpus. When we enhance the lexical network with
corpus and thesaurus, our result is comparable to
Turney and Littman’s with a large corpus.

5.2 Prediction ofβ

We examine how accurately our prediction method
for β works by comparing Table 1 above and Ta-
ble 2 below. Our method predicts goodβ quite well
especially for 14 seed words. For small numbers of
seed words, our method using magnetization tends
to predict a little larger value.

We also display the figure of magnetization and
accuracy in Figure 1. We can see that the sharp
change of magnetization occurs at aroundβ = 1.0
(phrase transition). At almost the same point, the
classification accuracy reaches the peak.

5.3 Precision for the Words with High
Confidence

We next evaluate the proposed method in terms of
precision for the words that are classified with high
confidence. We regard the absolute value of each
average as a confidence measure and evaluate the top
words with the highest absolute values of averages.

The result of this experiment is shown in Figure 2,
for 14 seed words as an example. The top 1000
words achieved more than 92% accuracy. This re-
sult shows that the absolute value of each average
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Table 3: Precision (%) for selected adjectives.
Comparison between the proposed method and the
shortest-path method.

seeds proposed short. path
14 73.4 (1.0) 70.8
4 71.0 (1.0) 64.9
2 68.2 (1.0) 66.0

Table 4: Precision (%) for adjectives. Comparison
between the proposed method and the bootstrapping
method.

seeds proposed bootstrap
14 83.6 (0.8) 72.8
4 82.3 (0.9) 73.2
2 83.5 (0.7) 71.1

can work as a confidence measure of classification.

5.4 Comparison with other methods

In order to further investigate the model, we conduct
experiments in restricted settings.

We first construct a lexical network using only
synonyms. We compare the spin model with
the shortest-path method proposed by Kamps et
al. (2004) on this network, because the shortest-
path method cannot incorporate negative links of
antonyms. We also restrict the test data to 697 ad-
jectives, which is the number of examples that the
shortest-path method can assign a non-zero orien-
tation value. Since the shortest-path method is de-
signed for 2 seed words, the method is extended
to use the average shortest-path lengths for 4 seed
words and 14 seed words. Table 3 shows the re-
sult. Since the only difference is their algorithms,
we can conclude that the global optimization of the
spin model works well for the semantic orientation
extraction.

We next compare the proposed method with a
simple bootstrapping method proposed by Hu and
Liu (2004). We construct a lexical network using
synonyms and antonyms. We restrict the test data
to 1470 adjectives for comparison of methods. The
result in Table 4 also shows that the global optimiza-
tion of the spin model works well for the semantic
orientation extraction.

We also tested the shortest path method and the
bootstrapping method on GTC and GT, and obtained
low accuracies as expected in the discussion in Sec-
tion 4.

5.5 Error Analysis

We investigated a number of errors and concluded
that there were mainly three types of errors.

One is the ambiguity of word senses. For exam-
ple, one of the glosses of “costly”is “entailing great
loss or sacrifice”. The word “great” here means
“large”, although it usually means “outstanding” and
is positively oriented.

Another is lack of structural information. For ex-
ample, “arrogance” means “overbearing pride evi-
denced by a superior manner toward the weak”. Al-
though “arrogance” is mistakingly predicted as posi-
tive due to the word “superior”, what is superior here
is “manner”.

The last one is idiomatic expressions. For exam-
ple, although “brag” means “show off”, neither of
“show” and “off” has the negative orientation. Id-
iomatic expressions often does not inherit the se-
mantic orientation from or to the words in the gloss.

The current model cannot deal with these types of
errors. We leave their solutions as future work.

6 Conclusion and Future Work

We proposed a method for extracting semantic ori-
entations of words. In the proposed method, we re-
garded semantic orientations as spins of electrons,
and used the mean field approximation to compute
the approximate probability function of the system
instead of the intractable actual probability function.
We succeeded in extracting semantic orientations
with high accuracy, even when only a small number
of seed words are available.

There are a number of directions for future work.
One is the incorporation of syntactic information.

Since the importance of each word consisting a gloss
depends on its syntactic role. syntactic information
in glosses should be useful for classification.

Another is active learning. To decrease the
amount of manual tagging for seed words, an active
learning scheme is desired, in which a small number
of goodseed words are automatically selected.

Although our model can easily extended to a
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multi-state model, the effectiveness of using such a
multi-state model has not been shown yet.

Our model uses only the tendency of having the
same orientation. Therefore we can extract seman-
tic orientations of new words that are not listed in
a dictionary. The validation of such extension will
widen the possibility of application of our method.

Larger corpora such as web data will improve per-
formance. The combination of our method and the
method by Turney and Littman (2003) is promising.

Finally, we believe that the proposed model is ap-
plicable to other tasks in computational linguistics.
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