

A New Method for Finding Generalized Frequent Itemsets
in Generalized Association Rule Mining

Kritsada Sriphaew, Thanaruk Theeramunkong

Information Technology Program
Sirindhorn International Institute of Technology, Thammasat University

P.O. Box 22 Thammasat Rangsit Post Office, Pathumthani 12121, Thailand
Phone:+66-2-986-9103(-8) Ext. 2004 Fax:+66-2-986-9112(-3)

Email: kong@siit.tu.ac.th, ping@siit.tu.ac.th

Abstract

Generalized association rule mining is an extension of
traditional association rule mining to discover more
informative rules, given a taxonomy. In this paper, we
describe a formal framework for the problem of mining
generalized association rules. In the framework, The
subset-superset and the parent-child relationships among
generalized itemsets are introduced to present the
different views of generalized itemsets, i.e. the lattice of
generalized itemsets and the taxonomies of k-generalized
itemsets ,respectively. We present an optimization
technique to reduce the time consuming by applying two
constraints each of which corresponds to each view of
generalized itemsets. In the mining process, a new set
enumeration algorithm, named SET, that utilizes these
constraints to fasten mining all generalized frequent
itemsets is proposed. By experiments on synthetic data,
the results show that SET outperforms the current most
efficient algorithm, Prutax, by an order of magnitude or
more.

1. Introduction

In the area of Knowledge Discovery in Databases
(KDD), association rule mining is one of the important
tasks. It was first introduced in [1] to find the set of all
subsets of items (called itemsets) that frequently occur in
many database records or transactions, and to extract the
rules telling us how a subset of items influences the
presence of another subset [2]. Nevertheless, association
rules may not provide desired knowledge in the database.
It may be limited with the granularity factors over the
items. For example, suppose that the database keeps a set
of transactions, where chocolate milk tends to be

purchased together with wheat bread. We may obtain a
rule of “5% of customers who buy wheat breads, also buy
chocolate milk”. At this point, it is more intuitive or more
informative to have a rule like “30% of customers who
buy bread, also buy milk” instead of the previous one.

For this purpose, generalized association rule mining
(GARM) was developed [3]. In GARM, a taxonomy (is-a
hierarchy) over the items is available. In the supermarket
scenario, the taxonomy can classify products (or items)
into brands, categories, product groups, and so forth.
Only leaf-level items of a taxonomy are presented in the
database. Together with a taxonomy, the database can be
used to mine more informative, initiative and flexible
rules (called generalized association rules) than the
traditional association rules.

The problem of mining generalized association rules
was first introduced in [3]. In this work, five algorithms
named Basic, Cumulate, Stratify, Estimate and EstMerge
were proposed to solve this problem. All of these
algorithms use the horizontal database format and the
breath-first search manner as in Apriori-based algorithm
[2]. Basic first extends each transaction in a database by
adding all distinct generalized items of each items
existing in the original transaction, and then generates
itemsets without pruning meaningless itemsets (itemsets
containing both an item and its ancestor according to
taxonomy). Cumulate, an improved variant of Basic,
incrementally filters out the meaningless itemsets before
counting their supports. Stratify exploits more taxonomy
information. This method can reduce the number of
generalized itemsets to be counted. Nevertheless, Stratify
wastes a lot of time in scanning the database multiple
times. Later, Estimate was proposed to get rid of this
waste by using a sampling method to estimate the support
of generalized itemsets. However, the extra pass to count
the generalized itemsets, that may wrongly be expected

not to satisfy the minimum support, has executed.
EstMerge is an improvement of Estimate by postponing
this extra pass in the step of calculating k-generalized
frequent itemsets to the next step of calculating (k+1)-
generalized frequent itemsets. This action results in
reducing the number of scanning database.

More recently efficient algorithm named Prutax was
proposed in [4]. Instead of horizontal database format, the
vertical database format is applied to reduce the time
needed for scanning database multiple times. Prutax
aplies the right-most depth-first search manner. Instead of
“generate and test” approach as done in the previous
algorithms, Prutax avoids generating meaningless
itemsets by using hash tree checking. In this approach, the
generalized itemsets containing the items in the higher-
level of taxonomy are always evaluated before its
descendants, which reduces the number of generalized
itemsets to be calculated. However, the limitation of
Prutax is the cost of checking. Each generalized itemset,
which is generated, have to be checked whether its
ancestor itemsets are frequent or not by using hash tree
before counting its support.

The main limitation of almost all proposed algorithms
[3,4] is that they make multiple passes over the disk-
resident database incurring high I/O overheads.
Moreover, these algorithms omit some useful information
of taxonomy for optimization, and the cost of checking in
Prutax algorithm adds more time consuming instead of
reducing it. Our work aims to overcome these limitations.

The rest of this paper is organized as follows. The
problem of GARM is formally described in Section 2. In
Section 3, two different views: the lattice of generalized
itemsets and the taxonomies of k-generalized itemsets are
presented. Two optimization constraints and our set
enumeration, SET algorithm, are proposed in Section 5.
In Section 6, the performance of SET is evaluated on
synthetic datasets with some variations. The paper ends
with a conclusion in Section 7.

2. Problem Statement

The generalized association rule can be formally
stated as follows: Let I = {i1, i2, …, im} be a set of distinct
items, let T = {1, 2, …, n} be a set of transaction
identifiers (tids), and let D = {tj | j∈ T} be an input
database where tj is the j-th transaction. A transaction can
be represented with a set of items (a subset of I), so-called
horizontal format while an item can be represented with a
set of transactions containing it (a subset of T), so-called
vertical format as shown in figure 1.

Let ! be a taxonomy, a directed acyclic graph (tree)
on the items. An edge in ! represents is-a (parent-child)
relationship. When there is an edge from i1 to i2 in !, i1 is
called a parent of i2 and i2 is called a child of i1. An item
is called an ancestor of i, denoted î, when there is a path

from î to i in !. In conversely, i is called a descendant of
î. Only leaf items of a taxonomy are presented in the
database. An example of taxonomy is shown in figure 2.

A set IG ⊆ I is called a generalized itemset when IG
does not contain both item and its ancestor. A t(IG) is
defined as a set of transactions which contain IG as their
subset. The tids of parent items are given by the union in
tids of its child items. From figure 1 and 2, AB, AZ, AD
are generalized itemsets while AX, XY are not, and t(X) =
t(A) ∪ t(B). The support of IG, denoted σ(IG), is defined
as a percentage of transactions in which IG occurs as a
subset to the total transactions, thus σ(IG) = |t(IG)|/|T|. A
generalized itemset is called generalized frequent itemset
if its support is greater than or equal to a user-specified
minimum support (minsup) threshold.

A generalized association rule is an implication of
the form R: I1→I2, where I1,I2 ⊆ I, I1∩I2=φ, and no item
in I2 is an ancestor of any items in I1. For example,
consider a database in figure 1 and a taxonomy in figure
2, A→C and X→C are generalized association rules,
while A→XC is not. The support of the rule, defined as
σ(I1∪ I2), is the percentage of transactions containing both
I1 and I2 to the total transaction. For example, the support
of A→C is σ(A∪ C) = |t(A)∩t(C)| / |T| = {1345}∩{456}|/6
= |{45}|/6 = 2/6 or 33%. The confidence of the rule,
defined as σ(I1∪ I2)/σ(I1), is simply the conditional
probability that a transaction contains I2, given that it
contains I1. For example, the confidence of A→C is
σ(A∪ C)/σ(A) = 2/4 or 50%. The rule is called
generalized association rule if its confidence is greater
than or equal to a user-specified minimum confidence
(minconf) threshold.

The task of GARM is to discover all rules from
arbitrary levels of taxonomy that have support and
confidence greater than or equal to minsup and minconf

Figure 2. A taxonomy on items in database

 !

 Y Z

 X C D E

A B

Figure 1. Horizontal (left) and vertical (right) database

Trans Itemsets
1
2
3
4
5
6

ADE
BE
ABDE
AC
ABCDE
C

Items Tidsets
A
B
C
D
E

1345
235
3456
15
1235

thresholds, respectively. This consists of two main steps :
1) find all frequent itemsets, and 2) generate all high
confidence rules. The latter step is relatively
straightforward while the former is costly computation
and I/O intensive. Thus, the problem of GARM can be
reduced to the problem of finding frequent itemsets. In
this work, we will focus on this problem.

3. Generalized itemset relationships

The generalized itemsets contain both subset-superset
relationship and parent-child relationship according to
taxonomy that can be represented by the lattice of
generalized itemsets and the taxonomies of k-generalized
itemsets, respectively.

3.1. Subset-superset relationship:

 lattice of generalized itemsets

Due to the space limitation, we assume that the reader

is familiar with basic concepts of lattice theory. However,
more details can be found in [6]. The formal concept
analysis [7] and the formal concept of itemset lattice in
association rule mining [8, 9, 10, 11] can be adapted to
construct the generalized itemset lattice in GARM.
Therefore, the following formal definitions are useful for
describing the concept of generalized itemset lattice.
Definition 1 (Set union and intersection according to
taxonomy operation): The set union according to
taxonomy operation, denoted by T! is a binary

operation, which is produced by the set union and
contains only the most descendant items according to
taxonomy. For example, AC T! BC = ABC, AD T! AW

= AD, and UD T! AW = AD. The set intersection

according to taxonomy operation, denoted by T" is a

binary operation, which is produced by the set
intersection and contains only the most descendant items
according to taxonomy. For example, AC T" BC = C,

AD T" AW = AD, and UD T" AW = AD.

Definition 2 (Lattice of generalized itemsets): The
lattice of generalized itemsets is the partial order
specified by the subset relation ⊆ , where the meet is
given by the set intersection operation, and the join is
given by the set union according to taxonomy operation
as follows. For any X1, X2 ⊆ I,

Meet : X1 " X2 = (X1 T" X2)

Join : X1 # X2 = (X1 T! X2)

3.2. Parent-Child Relationship:
 taxonomies of k-generalized itemsets

The useful definitions for defining the taxonomies of

k-generalized itemsets are described as follows:

Definition 3 (Ancestor-Descendant Itemset): Let X̂ , X

⊆ I, The itemset X̂ is an ancestor itemset of X if | X̂ | =

| X | and X̂ can be generated by replacing one or more
items in X with one of their ancestors items. X is called a

descendant itemset of X̂ .

Definition 4 (Parent-Child Itemset): Let X̂ , X, X $ ⊆ I,

X̂ is a parent itemset of X if there is no X $

with X $ being an ancestor itemset of X and X̂ being an

ancestor itemset of X̂ . X is called a child itemset of X̂ .
Normally, the given taxonomy presents only the

relation of single items (not itemsets) in the database.
Let’s call 1-itemset taxonomy. The relation of these items
is parent-child relationship according to taxonomy as
shown by the connection lines between parent and child
itemsets. By using parent-child relationship, we can
extend the original taxonomy to express the k-generalized
itemsets.

Each k-generalized itemset has the parent-child
itemset relationship. The tids of parent itemset equals to
the union of tidsets of their child itemsets. For example,
the itemset ACZ in 3-generalized itemset taxonomy has
two child itemsets, i.e. ACD and ACE, by which t(ACZ) =
t(ACD) ∪ t(ACE) = {5} ∪ {35} = {35}.

3.3. Combination of two relationships

The generalized itemsets can be shown in the complex
view that combines both subset-superset relationship and
parent-child relationship. For example, if we consider
only the generalized items A, B, C, X, Y and the taxonomy
as in figure 2. The complex view of generalized itemset
lattice is shown in figure 3. The thick lines show the
subset-superset relationship, and the dash arrow lines
show the parent-child relationship by which the itemset
located at the beginning of an arrow is the parent itemset
of the itemset located at the end of the arrow.

 Y X A B C

XC AB AC BC

ABC

 ∅

Figure 3. Combination of two relationships (A part)

4. Discovery of generalized frequent itemsets

Most of computational cost is to count the support of

generalized itemsets for checking whether they are
frequent or not, and checking for non-generating
meaningless itemsets. To reduce this computational cost,
the constraints and techniques are applied to optimize the
number of generalized itemsets to be counted.

4.1. Constraints on generalized itemsets

Two lemmas are presented to justify the optimization.

Lemma 1. For any X ⊆ I, if a generalized itemset X is
frequent, all subsets of X are frequent. Dually, if a
generalized itemset X is infrequent, all supersets of X are
infrequent.
Proof: Let X,Y, Z ⊆ I and Z = XY. The support of Z, σ(Z)
= |t(Z)|=|t(X)∩t(Y)| must be less than or equal to the
supports of its subsets, i.e. X and Y. Thus, if Z is frequent,
X and Y are too. If both X and Y or either of them is
infrequent, then neither does Z.

Lemma 2. For any X, X̂ ⊆ I where X̂ is an ancestor

itemset of X, if X̂ is frequent, then X is also frequent.

Dually, if X is infrequent, X̂ is also infrequent.

Proof: Let x, x̂ ∈ I and Y, Z, Ẑ ⊆ I. Assume that Z = xY,

Ẑ = x̂ Y. x̂ is an ancestor item of x, and Ẑ is an ancestor

itemset of Z. The support of Ẑ ,σ(Ẑ)=|t(Ẑ)|=|t(x̂)∩t(Y)|,
must be greater than or equal to the support of Z, σ(Z) =
|t(Z)| = |t(x)∩t(Y)|, since the support of ancestor item x̂ is
greater than or equal to the support of x. Thus, If

Ẑ satisfies minsup (frequent), Z does also. If Z does not

satisfy minsup (infrequent), Ẑ does also.

For fast finding all generalized frequent itemsets, each
lemma can be applied to each relationship of generalized
itemsets. Lemma 1 concerns with the subset-superset
relation which exists in the lattice of generalized itemset.
Lemma 2 concerns with the ancestor itemset which exits
in the parent-child relation in the taxonomies of k-
generalized itemsets. These two lemmas can be used to
avoid generating infrequent itemsets. For efficient
traversal, we try to generate only generalized frequent
itemsets. From Lemma 1, all subsets of any generalized
itemsets must be ensured that they are frequent before
generating them. From Lemma 2, the ancestor itemsets
must be frequent before generating their child itemsets.

4.2. SET algorithm

In this section, a new set enumeration named SET is

proposed for finding all generalized frequent itemsets.
With vertical database format, our method enumerates all
generalized frequent itemsets using left-most depth first
search. SET algorithm applies two efficient approaches
that is: 1) Based on combination of two relationships,
describing in section 3.3, we construct our novel set
enumeration that can avoid intensive checking on
meaningless itemsets. 2) Two constraints are
implemented to prevent counting infreqeunt generalized
itemsets.

Using the vertical database in figure 1 and a taxonomy
in figure 2 with minsup=1/6, our set enumeration starts
with an empty set. Then, we add all generalized frequent
items in the second level of the taxonomy, that are Y and
Z, and form the second level of tree as shown in figure 4.
The children of any itemsets are generated in two
manners. First, we generate all tax-based child itemsets
(based on parent-child relationship). Each generalized

Figure 4. A complete itemsets tree using a new set enumeration

φ

Y×123456 Z×1235

X×12345 C×3456 YZ×1235 D×15 E×1235

A×1345 B×235 XC×345 XZ×1235 CZ×35 YD×15 YE×1235 DE×15

ABC×35 ABZ×35 ACZ×35 AD×15 AE×135 BCZ×35 BD×5 BE×235 XCD×5 XCE×35 XDE×15 CDE×5

AB×35 AC×345 AZ×135 BC×35 BZ×235 XCZ×35 XD×15 XE×1235 CD×5 CE×35 YDE×15

ABCZ×35 ABD×5 ABE×35 ACD×5 ACE×35 ADE×15 BCD×5 BCE×35 BDE×5 XCDE×5

ABCD×5 ABCE×35 ABDE×5 ACDE×5 BCDE×5

ABCDE×5

child itemset is generated by replacing the right-most
items of those itemsets with one of their children (if
exists). Second, we generate all join-based child itemsets
(based on subset-superset relationship) by joining those
itemsets with all of their siblings that have higher orders.
For example consider on itemset Y, we first generate tax-
based child itemsets that is X and C, and join-based child
itemsets, i.e. YZ. In the same way, the tax-based child
itemsets of X (i.e. A and B) and join-based child itemsets
of X (i.e. XC and XZ, replacing YZ with X) are generated.
This process recursively occur until no new generalized
itemsets are generated. Finally, a complete itemset tree is
constructed without excessive checking cost as in figure 4.

The formal pseudo-code of SET are shown in figure 5.
The main procedure is SET-MAIN and a function, called
SET-EXTEND, creates a subtree follow by a proposed set
enumeration. SET-EXTEND is executed recursively to
create all descendant itemsets under the root itemsets. The
Addlink function creates a child itemset of a parent
itemset, such as Addlink(Y,X) creates a child itemset X of
a parent itemset Y. The Last function in line 6 returns the
last item of a generalized itemset. For example, Last(XY)
returns Y. The Tax-Child function in line 7 returns the
tax-based child itemsets of Fi. For example, to generate
the tax-based child itemset of XZ, when D and E are child
items of Z, the functions Tax-Child(XZ,D) and Tax-
Child(XZ,E) produce XD and XE, respectively. For the if
statements in line 8 and 11 prune nodes with supports less
than minsup (i.e. infrequent).

5. Experimental Results

The SET algorithm is evaluated and compared with
Prutax. All algorithms are coded in C language and the
experiments were made on a 1 GHz Pentium III with 1
GHz of main memory running Windows 2000.

As our preliminary experiments, the synthetic datasets
are used. The synthetic datasets were automatically

generated by the generator tool provided at IBM Almaden
with slightly modified default values. The important
default parameters in the datasets are shown in Table 1.

Table 1. Default values of parameters in the datasets

Depth-ratio ≈ (
probability that item in a rule comes from level i

probability that item comes from level i+1) [3]

Six experiments were made to investigate the

performance of SET algorithm compared with Prutax
algorithm by changing a different parameter in each
experiment. All parameters except the one being varied
were set to their default values. Four parameters, i.e.
minimum support, number of roots, fanout and depth-
ratio, are varied to investigate the algorithm. We also
scale-up the datasets by varying two parameters, i.e.
number of transactions and number of items. The
experimental results are shown in figure 6.

From figure 6, SET runs faster than Prutax with
different minsup. The number of generalized frequent
itemsets increase when lower minimum support. This
cause effects to Prutax by increasing depths of hash tree
and more time consuming for checking is needed, while
SET needs not to checking. In case of less number of
roots, the increasing of taxonomy levels effects to the
large number of ancestor itemsets. SET doesn’t effect to
this situation while Prutax requires more computational
time for checking. With different fanouts, the child of
each item in taxonomy are varied. The number of
ancestor itemsets in lower fanouts is larger than higher
fanouts which makes SET performs better than Prutax.
SET achieves approximately 4-6 times better than Prutax
with depth-ratio variation. In the lower depth ratio, more
rules have items come from the lower parts rather than
the upper parts of taxonomy, such that the ancestor
itemsets are increasing to gather the time consuming for
checking in Prutax.

In scale-up, SET performs well with large number of
transactions, since the generalized frequent itemsets
increase which make more intensive checking in Prutax.
At last, we increase the number of items (including
ancestor items) from 10,000 to 1,000,000 items. SET does
not effect to this variation, since the items are sparseness
in transactions with larger number of items. Thus, the
number of generalized frequent itemsets is reduced.

SET-MAIN (Database, Taxonomy, minsup):
1. Root = Null Tree // Root node of set enumeration
2. Addlink(Root, All frequent items from second level of taxonomy)
3. SET-EXTEND(Root)

SET-EXTEND(Father):
4. For i = 1 to numlinks(Father)
5. GTree=Null Tree
6. For each child of (Last(Fi) //Generate tax-based child itemset

7. C = Tax-Child(Fi, Child(Last(Fi)))
8. If supp(C) ≥ minsup then Addlink(GTree, C)
9. For j = i+1 to numlinks(Father) //Generate join-based child itemset

10. C = Fi ∪ Fj
11. If supp(C) ≥ minsup then Addlink(GTree, C)
12. Father.Links[i]Child = Gtree
13. If GTree!=Null then SET-EXTEND(Father.Links[i].Child)

Figure 5. The pseudo-code of SET algorithm

Parameter Default
Number of transactions
Average size of the transaction
Number of items
Number of roots
Fanout
Depth-ratio
Minimum support

1000K
10
100K
250
5
1
1%

6. Conclusion

In this paper we presented a theoretical framework of

generalized itemsets based on two relationships: (1)
subset-superset relationship (represented by lattice of
generalized itemsets), and (2) parent-child relationship
(represented by taxonomy of k-generalized itemsets). To
efficiently discover all generalized frequent itemsets, we
applied two constraints for these two relationships. We
proposed a SET algorithm to enumerate all generalized
frequent itemsets. SET uses the novel traversal on the
combination of two relationships to avoid generating
meaningless itemsets, and applies two constraints to
prevent counting useless generalized itemsets that are
infrequent. The investigation on experiments shows that
our proposed set enumeration, SET algorithm, can reduce
the cost of intensive checking as in the current most
efficient algorithm, Prutax algorithm, and prevents
overhead in enumerating generalized frequent itemsets.
From these causes, SET algorithm can fasten finding all
generalized frequent itemsets in generalized association
rule mining task.

7. Acknowledgment

This paper has been supported by Thailand Research
Fund (TRF) and NECTEC under project number NT-B-
06-4F-13-311.

8. References

[1] R. Agrawal, T. Imielinski, and A. Swami. “Mining

Association Rules between Sets of Items in Large
Databases”, ACM SIGMOD’93, Washington USA, 1993.

[2] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining
Association Rules”, VLDB ’94, Santiago Chile, 1994.

[3] R. Srikant, and R. Agrawal, “Mining Generalized
Association Rules”, VLDB ’95, Zürich Switzerland, 1995.

[4] J. Hipp, A. Myka, R. Wirth, and U. Güntzer, “A new
algorithm for faster mining of generalized association
rules”, 2nd PKKD, 1998.

[5] C.L. Lui, and F.L. Chung, "Discovery of Generalized
Association Rules with Multiple Minimum Supports", 4th
PKDD, Lyon France, Sept. 2000, pp.510-515.

[6] B.A. Davey, and H.A. Priestly, “Introduction to Lattices
and Order”, Cambridge University Press, 1990.

[7] B. Ganter, and R. Wille, “Formal Concept Analysis:
Mathematical Foundations”, Springer-Verlag, 1999.

[8] M.J. Zaki, S. Parthasaarathy, M. Ogihara, and W. Li, “New
Algorithms for Fast Discovery of Association Rules”,
KDD’97, Newport Beach California, 1997.

[9] M.J. Zaki, and M. Ogihara, “Theoretical foundatations of
association rules”, ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, June 1998.

[10] M.J. Zaki, and C.J. Hsiao, “CHARM: An efficient
algorithm for closed association rule mining”, Technical
Report 99-10, Computer Science Dept., Rensselaer
Polytechnic Institute, October 1999.

[11] M.J. Zaki, “Scalable algorithms for association mining”,
IEEE Trans Knowledge & Data Engineering, 12(3):372-
390, 2000.

Figure 6. Experimental results

1

10

100

1000

10000

4 3 2 1.5 1 0.75 0.5 0.375

Minimum Support (%)

Ti
m

e
(s

ec
on

ds
)

SET

PRUTAX

0

100

200

300

400

500

600

700

8192 4096 2048 1024 512 256 128

Number of Roots

Ti
m

e
(s

ec
on

ds
)

SET

PRUTAX

1

10

100

1000

10000

40 30 20 15 10 7.5 5 2.5

Fanout

Ti
m

e
(s

ec
on

ds
)

SET

PRUTAX
1

10

100

1000

4 3 2 1.5 1 0.75 0.5 0.375 0.25

Depth-Ratio

Ti
m

e
(s

ec
on

ds
)

SET

PRUTAX

0
50

100
150
200

250
300
350

400
450

10 50 100 500 1000

Number of Transactions ('000s)

Ti
m

e
(s

ec
on

ds
)

SET

PRUTAX

0

100

200

300

400

500

600

10 50 100 500 1000

Number of Items ('000s)

Ti
m

e
(s

ec
on

ds
)

SET

PRUTAX

